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Within simulations of molecules deposited on a surface we show that neuroevolutionary learning can
design particles and time-dependent protocols to promote self-assembly, without input from physical
concepts such as thermal equilibrium or mechanical stability and without prior knowledge of candidate or
competing structures. The learning algorithm is capable of both directed and exploratory design: it can
assemble a material with a user-defined property, or search for novelty in the space of specified order
parameters. In the latter mode it explores the space of what can be made, rather than the space of structures
that are low in energy but not necessarily kinetically accessible.
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Introduction.—How do we make a material with speci-
fied properties? In pursuit of “synthesis by design” [1,2] the
materials science community has developed and adapted
algorithms of inverse design and machine learning. These
approaches can identify interparticle potentials able to
stabilize target structures or promote their self-assembly
from solution [3–23], and can identify protocols or reaction
conditions that optimize the self-assembly of specified
particles [23–27].
Here we present an approach based on evolutionary

learning [28] that simultaneously designs particles and
protocols in order to self-assemble materials to order. We
study a coarse-grained computational model of molecular
self-assembly at a surface [29–31]. Coarse-grained models
are simple by design [32–45] but can exhibit key features of
real systems, including the formation of complex structures
and kinetic traps that impair assembly [46–51]. The
particular class of model we use here has been shown to
reproduce the thermodynamic and dynamic behavior of a
range of molecular and nanoscale assemblies at surfaces
[52]. Such models provide a rigorous test of algorithmic
control of self-assembly.
In order to allow thorough exploration of the self-assembly

behavior accessible to this class of model we express the
interparticle potential and time-dependent assembly protocol
as arbitrary functions, encoded by neural networks. In
evolutionary language, which reflects the method of learning
used and provides amnemonic for the role of each component
of the algorithm, this encoding is the instruction code or
“genome” for self-assembling a material. Molecular simu-
lation carried out using the particle and protocols specified by
the genome results in the “phenome,” a material whose
properties can be measured and compared to a design goal.

Evolutionary learning on the parameters of the neural
networks, called neuroevolution [28,53–57], can produce
materials whose properties satisfy user-defined goals,
which can be directed or exploratory in nature. Current
approaches to inverse design involve specifying a desired
structure; the present algorithm needs no information about
possible candidate or competing structures, nor prior
knowledge of what constitutes a good self-assembly pro-
tocol or particle design. For directed design we specify
materials with certain pore geometries and isolated clusters
of certain sizes. The solutions identified by the learning
algorithm include interparticle interactions whose sym-
metries can be realized by known molecules or complexes
[29–31]. The approach is simple to implement and can
identify sophisticated design strategies, realizing complex
structures via hierarchical self-assembly pathways. It can
also fail, if the design goal is too challenging, and we
discuss how to modify the goal in such cases.
Our approach is similar to that of Refs. [8,9] in that we

use an iterative learning method to promote self-assembly,
but differs in that we do not specify or build the target
structure in advance. In that respect it is similar to the
approach of Ref. [23], and complementary to that work
in that we express the design problem differently (in the
form of neural networks) and optimize differently (via
evolutionary methods). Our approach differs from other
approaches to inverse design in that we consider the design
of particles and protocols simultaneously. Physical laws are
built into the molecular simulation protocol in a standard
way [58]. The learning algorithm must operate within these
laws, but does not directly appeal to concepts such thermal
equilibrium or mechanical stability that are inputs to other
design protocols; instead, it attempts to control only what is
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kinetically accessible. We also go beyond traditional forms
of inverse design and borrow from the machine-learning
literature to specify the design goal of novelty [59]. Within
a space specified by certain order parameters we instruct
the evolutionary learning algorithm to produce materials
not seen previously, rather than materials with particular
properties. If we specify materials with three- and four-
membered pores then novelty search identifies structures
dual to regular and semiregular tilings of the plane and
motifs that comprise 2D quasicrystals. In this mode the
algorithm explores the space of what can be made, rather
than the space of structures that are low in energy but not
necessarily kinetically accessible.
Model and learning algorithm.—We consider a class of

coarse-grained model able to capture the essential physics
of molecular and nanoscale self-assembly at surfaces [52].
It comprises circular particles of hard-core diameter a on a
two-dimensional square substrate of side 50a. The sub-
strate has periodic boundary conditions in both directions.
Particles evolve under a stochastic dynamical protocol
consisting of a grand-canonical Monte Carlo algorithm
with chemical potential μ, which allows particles to
exchange with a notional solution [58], and the virtual-
move Monte Carlo algorithm [60,61], which allows par-
ticles to move on the surface according to an approximation
of Brownian motion [62]. Grand-canonical moves are
proposed with probability 1=ð1þ PÞ, where P is the
instantaneous number of particles on the surface [52].
All trajectories start from distinct disordered configurations
consisting of 500 particles randomly deposited on the
surface, and are run for t0 ¼ 109 Monte Carlo steps. The
angular component of the interparticle attraction UxðθÞ
and the time-dependent protocol (ϵyðtÞ; μyðtÞ) are encoded
as neural networks, specified in Sec. S1 of the
Supplemental Material [63]. Simulation potentials with
angular dependence are often called “patchy” [64]. The
interaction potential reflects the idea that particles interact

in a complementary way, such as through DNA hybridi-
zation, hydrogen bonding, or other directional donor-
acceptor mechanisms [29–31,65]. (Intermolecular
potentials depending on additional parameters, such as
spherical polar coordinates in three dimensions, can be
expressed using neural networks with additional input
nodes.) The control parameters μ and ϵ influence the
substrate density and the strength of interparticle attrac-
tions. We denote the parameters of the neural networks
by x and y. Using evolutionary language we call this
encoding the material’s genome, an idea sketched in
Fig. 1. The result of molecular simulation, using the
potential and protocol defined by the genome, is the
phenome.
To evolve genomes whose phenomes possess a desired

property we use an iterative genetic algorithm consisting of
a population dynamics combined with neuroevolution
[26,28,53–56], specified in Sec. S2 of the Supplemental
Material [63]. Neuroevolution, stochastic mutation of the
neural-network parameters, is equivalent in the limit of
small mutations to gradient descent in the presence of
Gaussian white noise [57]. The learning algorithm starts in
Generation 0 with a population of 100 randomly chosen
genomes, and “expresses” their phenomes via t0 steps of
the molecular simulation protocol described above. The
algorithm identifies the 10 phenomes possessing the largest
values of an objective function ϕ. The 10 corresponding
genomes are cloned and mutated in order to produce a new
population (or generation) of 100 genomes, whose phe-
nomes are then expressed via molecular simulation. This
iterative procedure continues, generation by generation,
until terminated by the user.
The objective function or evolutionary pressure is a user-

specified order parameter ϕ, evaluated at the final time
point of each simulation. In this work we consider order
parameters built from two quantities. One is Ck, the number
of clusters of interacting particles of size k (called k-mers).

(a) (b)

FIG. 1. (a) We express the angular interaction potential and the time-dependent self-assembly protocol for a set of model molecules in
the form of two neural networks, which together comprise the “genome” for making a material. In images, attractive portions of particles
are shown green. (b) Upon specifying a design goal, neuroevolutionary learning can produce a genome whose “phenome”—the result of
molecular simulations carried out using the potential and protocol specified by the genome—is a material satisfying that goal.
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The other is Nk, the number of convex loops of size k
(called k-gons) that can be drawn by joining the centers of
interacting particles. k-gons are pores: designing materials
with specified pore sizes is useful, e.g., for gas separation
[66]. In general, the method can work with any order
parameter the user wishes to specify, including structural or
dynamic measures, and can work with measures of novelty
that do not require the specification of a particular outcome.
Given a choice of order parameter, success is not guaran-
teed: if an overly challenging design goal is chosen, the
random particle- and protocol search that constitutes the
first stage of learning may fail to identify any solutions
consistent with the goal. Such difficulties can be overcome
using curriculum learning, choosing design goals of
progressively increasing difficulty [67]. We illustrate this
strategy in two cases, directing the algorithm to make a
material with 12-sided pores (the intermediate goal being
smaller pores) and isolated pentagonal clusters (which
require a design goal maximizing 5-mers and 5-gons).
In our approach the learning algorithm attempts to

identify a molecular symmetry [the potential UðθÞ] and
a time-dependent protocol (ϵðtÞ; μðtÞ) in order to achieve a
particular outcome. We are not modeling experimental
potentials that change with time: the potential UðθÞ is fixed
in time, during molecular simulations, and changes only
between evolutionary generations. The idea behind this
search strategy is the following: once a particular design is
identified, a user could in principle consult a list of known
molecules or complexes, and select those whose inter-
actions display the required symmetries [29–31]. Note that
key features of the self-assembly of a range of molecular
and nanoscale systems can be reproduced by capturing the
basic symmetries and energy scales of the building blocks
in question. For instance, the three-patch particle identified
in Fig. 3(c) can describe in a coarse way the equilibrium
and nonequilibrium behavior of structures made by carbon
atoms, a silica network, DNA nanostructures, and organic
molecules possessing covalent interactions or hydrogen
bonds [52,68–72].
The second element of our search scheme involves a

time-dependent protocol. Such protocols can be achieved in
a wide range of laboratory experiments. The parameter ϵ
represents the strength (the basic energy scale) of inter-
particle binding. In laboratory systems this quantity can be
controlled in a variety of ways, including by variation
of temperature, magnetic field strength, pH, or the con-
centration of salt, depletion agents, or other complexes
[65,73–76]. For brevity, we use the term “cooling” to refer
to the process of increasing ϵ. The parameter μ controls the
concentration of the notional vapor phase in contact with
the two-dimensional substrate, which can be straightfor-
wardly changed in, e.g., vapor-deposition experiments [77].
More generally, however, the protocol-learning algorithm
can work with any quantity that can be varied as a function
of time. It could be applied directly (independent of the

molecular simulations) to any experimental system in
which (1) one or more variables can be controlled as a
function of time, and (2) the outcome of the experiment
can be characterized. Based on the number of trajectories
(independent experiments) and evolutionary cycles
required to identify solutions, it is likely that a reasonable
rate of learning would require at least (3) a few tens
of experiments to be carried out per week. The conditions
(1)–(3) admit a wide variety of experimental setups.
Directed search.—We direct the algorithm to evolve a

material containing convex pores of size 12, and set
ϕ ¼ N12. This case provides an example of an objective
that is too complex to achieve without additional guidance:
12-gons are sufficiently complex that they do not form
spontaneously under the random particle- and protocol
design that comprises the initial stage (Generation 0) of
the learning algorithm. All phenomes score zero, and the
learning algorithm has nothing to work with. In this case a
simple modification of the objective is sufficient to overcome
the problem. We set ϕ ¼ Nminðx;12Þ, where x is the size of the
largest convex pore seen across all 100 phenomes of a given
generation. Thus if x is 12 or larger then the learning
algorithm selects genomes that produce 12-gons; if x is
smaller than 12 then it selects genomes that produce x-gons.
The results of several generations of learning using this

objective are shown in Fig. 2. The largest pore sizes seen
in the first four generations are 10, 9, 11, and 11, and
thereafter the first 12-gons are produced. The learning
algorithm improves its design and the yield of 12-gons
over evolutionary time, and eventually achieves the self-
assembly of a structure dual to the 3.12.12 Archimedean
tiling, which has one 3-gon and two 12-gons around each
vertex [78–80]. To do so requires a sophisticated design.
The particle must present sticky patches whose bisectors
are separated (approximately) by angles π=3 and 5π=6. In
addition, the patches must be inequivalent: if all patches
possess equal binding energy then kinetic traps impair the
formation of the structure [80]. The solution identified by
the learning algorithm is to make one patch weaker than the
other two, and to steadily cool the substrate. The result is a
hierarchical dynamics that starts with many isolated 3-gons
forming from the engagement of the strong patches.
Eventually the weak patches engage and cause the 3-gons
to form a network, which subsequently forms 12-gons
(Fig. S2). The learning algorithm also evacuates the
substrate, removing steric impediments to closure of the
network. The resulting strategy produces a yield of 12-gons
superior to that achieved by a human-designed particle and
protocol [Fig. S3(a)].
In Fig. 3 we show the results of evolutionary learning

instructed to make 4-mers (ϕ ¼ C4), 5-mers and 5-gons
[ϕ ¼ minðC5; N5Þ], and 6-gons (ϕ ¼ N6). In each case the
strategy learned is efficient: to produce 4-mers the algo-
rithm evolves particles with two patches separated by an
angle π=2, leading to compact square clusters; to make
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pentagonal 5-gons it evolves particles with patches sepa-
rated by an angle 3π=5; and to make 6-gons the algorithm
evolves particles with approximate threefold rotational
symmetry, which self-assemble under the learned protocol
into the honeycomb lattice. Similar motifs are seen in a
range of real systems that realize the honeycomb lattice
[29–31,52]. The evolutionary pressure to achieve geomet-
rical perfection of the interaction is relatively weak:

self-assembly of a particle with perfect threefold rotational
symmetry and a learned time-dependent protocol results in
a comparable yield of 6-gons [Fig. S3(b)]. The evolutionary
trajectories showing the emergence of these designs are
shown in Figs. S4, S5, and S6.
Exploratory search.—We end by showing that evolu-

tionary learning can be used in an exploratory mode,
searching for novelty rather than to achieve a desired
property [59]. To search for novelty within the space of
4-gons and 3-gons we impose the objective function

ϕ ¼
X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðN3 − NðjÞ

3 Þ2 þ ðN4 − NðjÞ
4 Þ2

r
; ð1Þ

where j runs over all phenomes produced in all previous
and current generations. Maximizing Eq. (1) leads to an
evolutionary pressure favoring materials most unlike those
produced to date, rather than materials with specified
values of N3 and N4. Over the course of ten generations
of novelty search the learning algorithm produces the
coverage of ðN3; N4Þ space shown in Fig. 4. Some of
the polygon structures dual to the particle structures found
during that exploration are shown in the figure. These
include size-limited motifs; the square and triangle regular
tilings of the plane; the 3.6.3.6 and 3.3.3.4.4 Archimedean
tilings [78–80]; and the σ, H, and Z binding motifs
prominent in dodecagonal quasicrystals [81]. The particle
that gives rise to those motifs is shown in the figure: it has
irregular sixfold symmetry, different to the fivefold and
sevenfold coordination known to form similar motifs [81].

FIG. 3. The results of evolutionary learning (genome bottom
and phenome top) instructed to produce (a) 4-mers, (b) 5-mers
and 5-gons, (c) 6-gons, and (d) 12-gons.

FIG. 2. Evolutionary learning directed to maximize the number of 12-gons, convex pores of 12 sides (shown light blue in images). The
main panel shows the yield ϕ, as a function of generation n, produced by the most successful genome (potential and protocol). The
particle symbols are the data points, which also show the form of the learned potential. Below the data points are plots of the learned
protocol (red and blue lines) and resulting yield (green lines) as a function of time t. The format of those plots is shown bottom right.
Large positive values of ϵ indicate strong particle attractions, and large positive and negative values of μ promote dense and sparse
substrates, respectively. The snapshots at the top show portions of a simulation box from three different generations, indicated by the
blue lines. Parameters: ϕ0 ¼ 90 12-gons, ϵ0 ¼ μ0 ¼ 20kBT, n0 ¼ 27 generations, t0 ¼ 109 Monte Carlo steps.
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A larger section of the material made by this particle is
shown in Fig. S7.
Conclusions.—We have shown that a neuroevolutionary

learning algorithm can identify particles and protocols for
the self-assembly of materials with desired properties,
without input from physical principles and with no prior
knowledge of self-assembly. The learning algorithm is
capable of both directed and exploratory design. It can
assemble a material with a user-defined property, or search
for novelty in the space of specified order parameters. In the
latter mode it explores the space of what can be made rather
than the space of structures that are low in energy but not
necessarily kinetically accessible. Moreover, the approach
described here can be used to address design problems of
considerable complexity. The neural-network encoding of
potential and protocol extends to an arbitrary number
of inputs and outputs—one could use state-dependent
information to inform the protocol [26], or express the
intermolecular potential as a function of additional varia-
bles, such as the angles required to define a potential in
3D—and evolutionary learning works with large numbers
of parameters [54,56].
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