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Self-dual structures whose dual counterparts are themselves possess unique hidden symmetry, beyond
the description of classical spatial symmetry groups. Here we propose a strategy based on a nematic
monolayer of attractive half-cylindrical colloids to self-assemble these exotic structures. This system can be
seen as a 2D system of semidisks. By using Monte Carlo simulations, we discover two isostatic self-dual
crystals, i.e., an unreported crystal with pmg space-group symmetry and the twisted kagome crystal. For
the pmg crystal approaching the critical point, we find the double degeneracy of the full phononic spectrum
at the self-dual point and the merging of two tilted Weyl nodes into one critically tilted Dirac node. The
latter is “accidentally” located on the high-symmetry line. The formation of this unconventional Dirac node
is due to the emergence of the critical flatbands at the self-dual point, which are linear combinations of
“finite-frequency” floppy modes. These modes can be understood as mechanically coupled self-dual
rhombus chains vibrating in some unique uncoupled ways. Our work paves the way for designing and
fabricating self-dual materials with exotic mechanical or phononic properties.
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Introduction.—Duality describes the hidden relationship
between two seemingly different structures or descriptions
[1,2], e.g., the graph duality in geometry [3], Kramers-
Wannier duality [4], the electromagnetic duality [5], etc.
Duality can generate a self-dual point, at which the dual
counterpart of the structure is itself, and unique hidden
symmetry emerges giving rise to some unusual degeneracy
beyond the description of standard space-group theories
[6-8]. Recently, a self-dual point was discovered in an
isostatic mechanical network whose average coordination
number is twice the system dimension, which can be used
to realize the “mechanical spintronics” [9]. According to
the Maxwell rule [10], this kind of structure is at the
edge of mechanical stability (isostatic point) [11-14]. This
property has been utilized to design flexible metamaterials
[15-19] and topological mechanical insulators [20-25].
Nevertheless, so far, only twisted kagome lattice was found
to be self-dual [9] and the origin of this duality remains
unknown. Searching for new self-dual isostatic structures
of different symmetries not only helps uncover the principle
of duality in related classical systems, but also paves the
way to fabricate exotic mechanical and/or phononic mate-
rials, for which one needs to find new strategies to construct
microscopic structures with discrete dual transforma-
tions [9,26].

In this Letter, we show that a nematic monolayer of
attractive half-cylindrical colloidal rods can self-assemble
into two isostatic self-dual crystals with discrete freedom
degrees, i.e., the twisted kagome crystal and an unreported
crystal with pmg space-group symmetry. The hidden

0031-9007/21/127(1)/018001(7)

018001-1

duality in the new isostatic structure induces the double
degeneracy of the full phononic spectrum at the self-dual
point and generates unconventional critically tilted Dirac
cones, which are accidentally located on the high-sym-
metry lines in the Brillouin zone (BZ). As the system
departs from the self-dual point, each Dirac node divides
into two Weyl nodes. We find that the emergence of the
critical flatbands at the self-dual point is the key to the
formation of the critically tilted Dirac cones. These flat-
bands are linear combinations of the finite-frequency
floppy modes, which can be understood as mechanically
coupled self-dual rhombus chains vibrating in some unique
uncoupled ways. Our finding can not only help build new
self-dual materials with exotic mechanical or phononic
properties, but also provide opportunities to observe
intriguing phenomena in extreme conditions with simple
classical systems.

Model and simulation—We consider a monolayer
of N hard half-cylindrical colloidal rods with diameter o
[Fig. 1(a)] and assume the rods are perfectly aligned under
external fields or nematic interactions [27,28]. Except for
the hard core interaction, there is also a short-range
attraction between the curved lateral surfaces of two
parallel rods, which we model as a square-well potential,
with w = (.16 the square-well width and ¢ the well depth.
This attraction can be realized by depletion force [29] and
capillary bridging force [30] with surface modifications or
effective interaction arising from nematic liquid crystal
elasticity [31,32]. We define a reduced temperature
T* = kgT /e, where kg and T are the Boltzmann constant
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(a) Schematic of two parallel half-cylindrical rods. (b) Fluid phase. (c),(d) Top and side views of open crystals in contact.

Left: pmg crystal. Right: p31m (twisted kagome) crystal, where J is the open angle. The blue and red arrows indicate the orientation of
the stripes. The orange lines enclose the unit cells of two crystals. (e) Hexagonal (Hex) crystal phase. (f) Phase diagram of the system in

dimensions of density p and reduced temperature 7.

and the temperature of system, respectively. Since the rods
are perfectly aligned, the system can be effectively modeled
as a 2D semidisk system. p = N/A is the 2D density, with
A the 2D area. We perform Monte Carlo simulations of the
system with full periodic boundary conditions [28,33,34].
The details of the simulation can be found in the
Supplemental Material [35].

Entropy-stabilized isostatic open crystals.—In Fig. 1(f),
we show the obtained phase diagram of the system. At high
T*, the fluid phase [Fig. 1(b)] is a thermodynamically stable
phase up to po? ~ 1.8, while the hexagonal crystal phase
[Fig. 1(e)] can only be stable when po®=2.0. The
hexagonal crystal is a hierarchical structure consisting of
dimers of two close-packed half-cylinders. With decreasing
T*, the fluid phase is divided into a dilute gas phase and a
dense liquid phase. The critical regime of the gas-liquid
phase separation is indicated by the dashed line in the phase
diagram. With further decreasing 7™, the open crystal phase
[Fig. 1(d)] appears between the gas and liquid phases. The
latter finally disappears when 7% < 0.1. The phase diagram
remains qualitatively the same when decreasing the attrac-
tion range (see Fig. S1 in the Supplemental Material [35]).
As shown in Figs. 1(c) and 1(d), the open crystals are also
hierarchical structures, which are composed of the half-
cylindrical trimers with the triangle empty void. These
trimers align in stripes whose direction can be up (A) and
down (B) as indicated by the blue and red arrows in
Fig. 1(c). We find the AAAA sequence leads to the twisted
kagome crystal with p31m symmetry, while the ABAB
sequence produces an unreported crystal with pmg sym-
metry. The unit cells for the two open crystals are drawn in
Fig. 1(c) using orange lines. Similar to the twisted kagome
lattice, which can be obtained from the standard kagome

lattice through twisting the unit cell (Guest-Hutchinson
mode [41]), the pmg lattice can be formed from a
rectangular lattice by doing a similar deformation (see
Fig. S2 for the deformable pmg lattice assembled from
Lego units in [35]). More importantly, the densities of both
two crystals are controlled by the same open angle 9 as
shown in Fig. 1(c). Therefore, two crystals are compatible
with each other on the phase boundary [see the dashed line
in Fig. 1(c) and Fig. S3 in [35] ]. The free energy of pmg
crystals is only slightly lower than the p31m crystal (about
0.03 kgT per particle) due to the different vibrational
entropy, according to free-energy calculations based on
Einstein integration and dynamic matrix theory (see text
and Table S1 in [35]). This explains why, in our direct
Monte Carlo simulation, only the nucleation of random
stripe sequences instead of perfect p31m or pmg crystals is
observed, similar to the nucleation of fcc-hcp crystals from
hard-sphere fluids [42]. In experiments, one can use a
prefabricated template to induce the growth of the preferred
crystal [43,44].

For open crystals, each particle forms four attractive
bonds with its neighbors, making them isostatic crystal
according to the Maxwell rule. Therefore, both open
crystals can be stretched to about 150% without energy
cost or symmetry breaking when 7 — 0 (see Fig. S4 in
[35]). Nevertheless, our simulation shows that the equilib-
rium open angle is 9., = 95.7° at zero pressure (T* = 1073,
w = 10"26). In the Supplemental Material [35], we con-
struct a mean-field theory to calculate the rotational entropy
of rods as function of open angle 9. This mean-field theory
predicts that the rotational entropy is maximized around
9.4 = 92.2° for both open crystals, close to the measured
value. Therefore, these two isostatic crystals are
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mechanically stabilized by entropy [45—47]. It should be
mentioned that J,, can be effectively tuned in the range
from 89.7° to 95.7° by changing the attractive area on the
half-cylinders (see Fig. S5 in [35]). As shown later, this
range covers the critical open angle 9. = 90° at which the
structure is self-dual.

Duality of pmg crystals.—At low temperature, when
particles only vibrate around the lattice, the open crystal
can be described by an effective Hamiltonian under the
harmonic approximation (see [35] for the derivation),

k K
Heff:Z§ui2+§ZAa%l (1)
i 7

where u; (Aa,) is the translational (rotational) displace-
ment of particle i (bond angle /) from its equilibrium value.
Here the first term accounts for central-force attractive
bonds and the second term describes the effective bond-
bending rigidity arising from particle rotational entropy,
with k and « the corresponding effective spring constants.
When T* — 0 and w — 0, which corresponds to the low-
temperature limit for system with general interaction, the
bond-bending rigidity can be neglected compared with the
central-force bond stiffness. We calculate the phononic
spectrum w(q) for the pmg crystal under this condition by
solving the eigenvalue of the dynamic matrix (see the
Supplemental Material [35] for details). In Figs. 2(a)-2(c),
we show w(q) under three different open angles, i.e.,
9. =90° and 9.+ A9 with A9 = 15°. We observe the
identical phononic spectrum for d. = A9 and the twofold
degeneracy of the spectrum at the critical angle 9., similar
to what was found in twisted kagome lattice [9]. This
indicates that this critical angle is associated with a hidden
symmetry that produces the same effect in spin 1/2
electronic systems according to Kramers theorem [9,48].
We further prove that there exists a dual transformation
represented by the unitary matrix I/ between pmg lattices at
two different open angles 9 and 9* [Fig. 2(d)], which
satisfies

U(q)D(9*, —q)U' (q) = D(9.q). (2)

with 9% = 29, — 9. Therefore, 9 = 9* = 9. is the self-dual
point. Here D(9, q) is the dynamic matrix of the system at
open angle 9. In U, different rows with different colors
correspond to different sites in the unit cell. One can see
that U/ contains site exchange operation (2 — 6, 3 — 5). It
also contains the translation operator 7, = e¢~@? that
shifts site 1 by one period in the x direction. Lastly, I/
contains fourfold rotation operators r, = () acting on
the vibrational freedom degrees.

Critically tilted Dirac cone.—In Figs. 2(a)-2(c), the
eigenmodes are double degenerated along the MX line
in the BZ [Fig. 2(e)] at arbitrary J. This degeneracy is due
to the nonsymmorphic glide reflection symmetry in the x
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FIG. 2. (a)—(c) Phononic spectrum of pmg harmonic crystals at
different open angles. The flatbands are indicated by different
colors except blue. The Dirac node is marked by the magenta
circle. (d) Duality transformation that maps the vibrational
freedom degrees between two pmg lattices. Black dots are the
centers of space inversion. (¢) Two adjacent Brillouin zones
separated by the orange line at ¢, = z/a;. The red (blue) sold
points represent the tilted Weyl nodes with Berry phase =+,
which merge into a critically tilted Dirac node (magenta circle) as
9 — 3. (f) 3D band surfaces of bands (1, 2) and bands (3, 4) near
the critically tilted Dirac node.

direction. With 8 — 9., the double-degenerated bands (1,
2) and bands (3, 4) along the M X line begin to contact at a
point (the magenta circle) and form a completely flat band
(orange line). The linear behavior around this point
suggests that it is a Dirac node composed of two coincident
Weyl nodes. To confirm this, we calculate the Berry
phase

yi=i 7§ dq - i,(q)V, i) (q) 3)

along an enclosed trajectory C round the Dirac node in the
BZ for band j, where ui;(q) is the eigenstate at q. For 2D
Dirac (Weyl) systems, the Berry phase divided by 7 is a
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quantized topological number (winding number) [49,50].
The Weyl nodes with Berry phase +z can be viewed as
topological charges or vortices with sign &+ in the vector
field of 2D momentum space [49]. We find that the Berry
phase is £z for either bands (1, 2) or bands (3, 4) when the
trajectory encloses the node, while the summation of the
two phases remains zero, indicating that topological
charges neutralize at the Dirac node. On the contrary,
the Berry phase remains zero when the trajectory does not
enclose the nodes for all four bands. In Fig. 2(f), we also
plot the 3D band surfaces of bands (1, 2) and bands (3, 4).
We find that the contact point essentially connects two
double-degenerated, critically tilted Dirac cones. The flat-
band along the MX line turns out to be the tangent line
(orange line) of two bands with a horizontal surface
(shadow plane). We notice that similar critically tilted
Dirac (Weyl) cones, which are also called type III or
zero-index Dirac (Weyl) cones, were recently discovered in
electronic and phononic systems [51-56]. At this cone, the
quasiparticles have highly isotropic mass, which can induce
many interesting phenomena, like zero flection index [56],
black hole horizon [54,57], and enhanced superconducting
gap [58], etc. In our system, the Dirac node is protected by
glide reflection and the hidden self-dual symmetry.
Thus, changing the mass of particle pair (1, 4), (2, 6), or
(3, 5) does not lift the Dirac nodes. Moreover, the Dirac
nodes are located accidentally on a high-symmetry line.
References [7,8] showed that the accidental degeneracy
can result from the hidden antiunitary symmetry,
which is consistent with the antiunitary nature of dual
transformation [9].

As the system departing from the critical point, each
Dirac node is separated into two noncritically tilted Weyl
nodes with opposite Berry phases £z, which we represent
as red (+) and blue (—) solid points in Fig. 2(e). These
nodes are the contact points between bands (2, 3), which
are hidden in Figs. 2(a) and 2(c). The dividing of one Dirac
node into two Weyl points in our system is similar to the
transition from Dirac semimetals to Weyl semimetals in
electronic systems [59]. In 3D, the Weyl nodes can be
accidentally generated at low-symmetry points in the BZ
[59], while in 2D it would be impossible without additional
symmetry constraints. In our system, we find that the Weyl
nodes can be lifted by changing the mass of the particle pair
(2, 6), (3,5), (2, 5), or arbitrary single particle, but not for
the particle pair (1, 4), (2, 3), or (5, 6). This suggests these
nodes are protected by the space inversion symmetry with
the center points marked as black dots in Fig. 2(d).

Critical flatbands and finite-frequency floppy modes.—
When 9 approaches 9., another interesting phenomenon is
the emergence of double-degenerated flatbands, which are
indicated by five different colors except blue in Fig. 2(b). As
shown previously, the orange flatband is the key to the
formation of the critically tilted Dirac cone. In Figs. 3(a) and
3(b), we show one of two eigenmodes for the M point and X

rhomb chain
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FIG. 3. (a),(b) Vibrational modes at X and M points in the BZ
for the orange flatband. The vibration direction of linking points
(red and blue arrows) are perpendicular to the linking bonds
(thick black lines). (c¢) The structure of the chain of rhombic units.
(d)—(f) Phononic spectrum of the chain at different open angles.
The colored circles at I" and X points correspond to the flatbands
of the same colors in Fig. 2(b).

point on this flatband, respectively. Their degenerated
counterparts are shown in Fig. S6 in [35]. In the
Supplemental Material [35], we prove that these flatbands
are linear combinations of finite-frequency floppy modes in
which vibration freedom degrees of linking bonds [thick
lines in Fig. 3(a) and 3(b)] are frozen. Since these linking
bonds contribute zero energy, these floppy modes are
also the eigenmodes of the chain of rhombic units [see
Fig. 3(c)]. In Figs. 3(d)-3(f), we plot the phononic spectrum
of this chain system at three different open angles 9, as the
same as that in Figs. 2(a)-2(c). We find the duality of the 2D
lattice is preserved in this quasi-1D system, which results in
the same double degeneracy of band structure at 9,.. Exact
mapping can be built between the flatbands in Fig. 2(b) and
the degenerated points in Fig. 3(e), which are marked by
circles of the same colors. These findings suggest the
possibility of designing high-dimensional self-dual struc-
tures from the low-dimensional ones [60].

Conclusion and discussion.—By using Monte Carlo
simulation, we demonstrate that half-cylindrical colloidal
rods with short-range attraction can self-assemble into two
isostatic self-dual crystals with p31m (twisted kagome) and
pmg symmetries. To the best of our knowledge, this special
pmg isostatic structure has not been reported before, which
exhibits unconventional critical-tilted Dirac cones and
rare finite-frequency floppy modes. Since half-cylindrical
geometry can be projected by a 2D semidisk pattern, one can
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apply current mature techniques based on photolithography
or mold to fabricate half-cylindrical rods [61-63]. This
method can also be used to directly fabricate a 2D array of
end-fixed half-cylindrical pillars, where the central-force
bonds between pillars are realized by the screened electro-
static repulsion. Similar open crystals are also expected to be
self-assembled from bowl- [64] or banana-shaped [65]
colloidal particles with patchy modifications. Our finding
opens up new possibilities in designing 2D metamaterials
with exotic mechanical or phononic properties [17,18]. For
example, the existence of the critically tilted Dirac cone in
this self-assembled structure suggests that it is possible to
fabricate zero-index phononic or mechanical materials in a
cheaper and faster way [56,66]. It also provides opportu-
nities in classical systems to observe some intriguing
phenomena that commonly exist in extreme conditions,
e.g., the black hole horizon [54,57,67].
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