
 

Electrically Controlled Crossed Andreev Reflection
in Two-Dimensional Antiferromagnets

Martin F. Jakobsen , Arne Brataas, and Alireza Qaiumzadeh
Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology,

NO-7491 Trondheim, Norway

(Received 15 March 2021; accepted 3 June 2021; published 29 June 2021)

We report generic and tunable crossed Andreev reflection (CAR) in a superconductor sandwiched
between two antiferromagnetic layers. We consider recent examples of two-dimensional magnets with
hexagonal lattices, where gate voltages control the carrier type and density, and predict a robust signature of
perfect CAR in the nonlocal differential conductance with one electron-doped and one hole-doped
antiferromagnetic lead. The magnetic field-free and spin-degenerate CAR signal is electrically controlled
and visible over a large voltage range, showing promise for solid-state quantum entanglement applications.
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Introduction.—In quantummechanics, identical particles
can form entangled pairs sharing a common wave function:
a measurement performed on one particle predetermines
the state of the other. Entanglement is a unique quantum
effect and was first experimentally verified using pairs of
linearly polarized photons [1,2]. Currently, entangled states
play a vital role in quantum computing, communication,
and cryptography technologies [3,4]. Nevertheless, large-
scale societal implementation requires entanglement in
solid-state devices over long distances.
Electrons in a Cooper pair can be spatially separated, but

remain spin and momentum entangled via a process called
Cooper pair splitting [5–7]. The time-reversed process
is called crossed Andreev reflection (CAR) or nonlocal
Andreev reflection. CAR is the nonlocal process of
converting an incoming electron from one voltage-biased
lead into an outgoing hole in another grounded lead via
Cooper pair formation in a grounded superconductor [8,9].
This process requires the distance between the two leads to
be comparable to or shorter than the superconducting
coherence length. A significant disadvantage in current
state-of-the-art technology is that two detrimental processes
often mask the CAR signal: (i) nonlocal electron cotunnel-
ing (CT) between the two leads and (ii) local Andreev
reflection (AR) in the voltage-biased lead. The optimal
solution, is to design a system that suppresses CT and AR
signals while enhancing CAR signals.
Presently, numerous superconducting heterostructures

have been proposed to enhance CAR signals utilizing
different leads, such as normal metals (NMs) [10–13],
ferromagnetic (FM) metals [9,14–17], two-dimensional
(2D) graphene [18,19], and topological insulators [20–25].
Conclusive experimental detection of CAR signals remains
challenging, but progress has been made by utilizing NM
leads [26–31], FM leads [32–36], quantum dots [37–43], and
very recently, graphene-based systems with opposite doping

levels in the two leads [5,44]. Nevertheless, most proposals
require fine-tuning of the electronic structure and bias
voltage. Furthermore, there are two additional disadvantages
associated with FM leads: First, stray fields limit the
potential use of FM systems in high-density applications.
Second, although in FM half metal leads, it is possible to
enhance the CAR signal when the magnetization of two
leads is antiparallel, the spin entanglement of the electrons is
simultaneously lost [14,19].
In this Letter, we propose utilizing 2D metallic anti-

ferromagnetic leads, to overcome these issues. Although
antiferromagnetic systems are magnetically staggered
ordered systems, they have negligible stray fields and their
degenerate spin states preserve entanglement.
Recently, antiferromagnets have revealed potential in

superconducting spintronics. For instance, at the antiferro-
magnet-superconductor interface, normal electron reflection
(NR) and AR have been demonstrated to be both specular
and retroreflective [45–59]. In heterostructures, these anoma-
lous processes fundamentally change the behavior of the
electrical and thermal conductance [45]. In Josephson
junctions, atomic-scale 0-π transitions [47–52] are predicted
to occur. The existence of Josephson effects has been
experimentally verified [53–59], but the remaining theoreti-
cal predictions have yet to be explored.
Herein, we investigate the suitability of an antiferromag-

net-superconductor-antiferromagnet (AF-S-AF) junction
with a 2D hexagonal lattice as a platform for experimental
detection and quantum applications of CAR signals. Our
model is general and applicable to systems in which
antiferromagnetism and superconductivity are either intrinsic
to the material or induced by proximity. We find a gate-
controllable window in parameter space, wherein both CT
and AR signals can be completely suppressed in favor of the
CAR signal. This robust experimental signature is expected
to be directly measurable over a wide range of applied bias
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voltages. Our prediction of enhanced CAR signals in
antiferromagnetic-based devices combined with recent
experimental advances in graphene-based junctions [5,44]
open a unique opportunity to realize efficient large-scale
Cooper pair splitters with immediate applications in solid-
state quantum entanglement technology.
Model.—We consider a superconductor of length LS

sandwiched between two semi-infinite 2D antiferromag-
netic metals with hexagonal lattices, forming a 2D AF-S-
AF junction along the x direction, as shown in Fig. 1. The
left lead (AF0), the superconductor (S), and the right lead
(AF1) occupy the regions x < −LS=2, −LS=2 < x < LS=2,
and x > LS=2, respectively. The dynamics of charge
carriers around the K point in the Brillouin zone are
governed by an eigenvalue problem HðxÞΨðxÞ ¼ EΨðxÞ,
where

HðxÞ ¼
"
He

AFðxÞ − EFðxÞ Δ̃ðxÞ
Δ̃†ðxÞ Hh

AFðxÞ þ EFðxÞ

#
ð1Þ

is the mean-field Bogoliubov–de Gennes (BdG)
Hamiltonian [60,61], and EFðxÞ is the local Fermi energy.
In 2D systems, EFðxÞ may be tuned by a gate voltage.
In the BdG Hamiltonian, the dynamics of low-energy

itinerant charge carriers in the hexagonal antiferromagnetic
leads around the K point are described by an effective
Dirac-like Hamiltonian for the electron subsector

He
AF¼HpþHsd and the hole subsector Hh

AF¼−Hp−HT
sd,

where T denotes the transpose operator. The kinetic
Hamiltonian of the antiferromagnet is

HpðxÞ ¼ vFs0 ⊗ ðσ · pÞ; ð2Þ

where vF, p ¼ −iℏð∂x; ∂yÞ, and ℏ denote the Fermi
velocity, 2D momentum operator, and reduced Planck
constant, respectively. In our notation, σ and s denote
the Pauli matrices in sublattice and spin space, respectively.
The antiferromagnetic s-d exchange interactions between
localized magnetic moments and itinerant electron spins are
described by

HsdðxÞ ¼ JðxÞ½nðxÞ · s� ⊗ σz: ð3Þ

Here, JðxÞ and nðxÞ denote the exchange strength and
staggered Néel vector direction, respectively. We consider
single-domain and collinear AFs with a uniform Néel
vector in each lead, nðxÞ¼nj, where the index j¼f0;1g
refers to the lead AFj. The misalignment angle between the
Néel vectors is δγ ¼ arccos ðn0 · n1Þ. The eigenenergies of
the 2D antiferromagnetic hexagonal Hamiltonian HeðhÞ

AF are

EAF ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏvFkÞ2 þ J2

p
, where k is the 2D wave vector

and þ and − refer to the conduction and valence bands,
respectively. Thus, the itinerant charge carriers around the
K point behave like massive Dirac particles with a band gap
of magnitude 2J induced by the antiferromagnetic s-d
exchange interaction (see Fig. 2).
We consider an s-wave superconductor described by

BCS theory where the superconducting gap in the two-
sublattice space is

Δ̃ðxÞ ¼ isy ⊗ ΔðxÞσ0: ð4Þ

The superconducting coherence length is given by
ξ ¼ ℏvF=Δ, which estimates the Cooper pair size. The
mean-field requirement of superconductivity is that the
local Fermi energy in the superconductor, EFS, is much
larger than the superconducting gap.
To illustrate the main concepts, and for clarity and

simplicity, we assume that all energy scales exhibit the
step-function behavior:

fJðxÞ; EFðxÞ;ΔðxÞg ¼

8>>><
>>>:

fJ0; EF0; 0g; x < − LS
2
;

f0; EFS;Δ0g; − LS
2
< x < LS

2
;

fJ1; EF1; 0g; x > LS
2
;

ð5Þ

where fJj; EFj; EFS;Δ0g are constants and j ¼ f0; 1g
refers to the lead AFj. We also assume that EFS ≫ EFj,
and that the interfaces are magnetically compensated and

FIG. 1. The scattering processes in the AF-S-AF junction. We
assume that AF0 is biased with voltage V, while S and AF1 are
grounded. An incoming electron in AF0 may undergo (i) NR,
(ii) AR, (iii) CT, or (iv) CAR. NR and AR contribute to the local
conductance measured in AF0, and CTand CAR contribute to the
nonlocal conductance measured in AF1.
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ideal. Interface effects are discussed in the Supplemental
Material (SM) [62].
Local and nonlocal conductance.—We consider that

AF0 is biased with voltage V, while S and AF1 are
grounded. Consequently, a local and nonlocal conductance
can be measured in AF0 and AF1, respectively. To
determine the local and nonlocal conductance, we consider
a scattering problem with an incident electron from AF0. In
general, the allowed scattering processes are (i) local NR,
(ii) local AR, (iii) nonlocal CT, and (iv) nonlocal CAR, as
shown schematically in Fig. 1. Using the Blonder-
Tinkham-Klapwijk formalism [63], the local conductance

GL ¼
X
s¼↑;↓

Z
∞

−∞
dε

�
−
∂f
∂ε

�
Gs

0ð2 −Gs
NR þ Gs

ARÞ ð6Þ

is determined by NR and AR, while the nonlocal
conductance

GNL ¼
X
s¼↑;↓

Z
∞

−∞
dε
�
−
∂f
∂ε

�
Gs

1ðGs
CT −Gs

CARÞ ð7Þ

is determined by CT and CAR. Note that CT and CAR
contribute with opposite signs in Eq. (7). Herein, s denotes
the spin degree of freedom, and Gs

j is the intrinsic
conductance of the lead AFj. The Fermi-Dirac distribution
of incident electrons in AF0 at temperature T is denoted by

f ¼ ðeβðε−eVÞ þ 1Þ−1, where β is the thermodynamic beta
and e is the elementary charge. Explicitly,

Gs
NRðARÞ ¼

Z
π=2

−π=2
dθ cos θRs

eðhÞ;

Gs
CTðCARÞ ¼

Z
π=2

−π=2
dθ cos θTs

eðhÞ; ð8Þ

where Rs
eðhÞ and Ts

eðhÞ are the spin-dependent probabilities

of NR (AR) and CT (CAR), respectively, and θ is the angle
of incidence for the incoming electron (see SM [62]). In the
following, we consider the zero temperature limit.
CAR enhancement.—As mentioned above, the antifer-

romagnetic s-d exchange interaction induces a band gap of
2Jj in each lead AFj. When a gate voltage is used to tune
the local Fermi energy EFj, it is possible to control the
contributions of different scattering processes to the total
nonlocal conductance. As an example, consider the case in
which EF0 ¼ −EF1 ¼ EF > Jj > 0, where AF0 is electron
doped and AF1 is hole doped, as depicted in Fig. 2. In this
case, CT is completely suppressed for bias voltages in
the interval EF − J1 < eV < EF þ J1. Furthermore, if we
set J0 ¼ J1 ¼ EF and EF=Δ0 > 1=2, then the CAR signal
becomes dominant for all voltages in the subgap regime,
eV=Δ0 < 1.
To study the CAR-dominant regime, we set J0 ¼ J1 ¼

J ¼ EF > 0, where both AR and CT processes are sup-
pressed simultaneously. For concreteness, we fix the length
of the superconductor to its coherence length LS ¼ ξ and
assume that the Néel vectors in the two leads are parallel
n0 ¼ n1. In Fig. 3(a), we plot the normalized nonlocal
conductance GNL ¼ GNL=

P
s G

s
1 at zero temperature as a

function of the voltage bias eV=Δ0 for the AF-S-AF
junction. If the applied voltage is less than the super-
conducting gap, that is, eV=Δ0 < 1, both the CT and AR
signals are completely suppressed due to the antiferromag-
netic exchange gap. In this regime, the nonlocal conduct-
ance is negative, and thus, the CAR signal is dominant. The
amplitude of the nonlocal conductance depends strongly on
LS=ξ; see the SM [62].
Thus far, we have considered the Néel vectors to be

parallel. We show in the inset in Fig. 3(a) that the amplitude
of the total nonlocal conductance varies with the misalign-
ment angle between the two Néel vectors, while its sign
remains unchanged. We attribute this anisotropic CAR
signal to the opening of spin-flip channels during the
scattering processes.
For completeness, we compare our result for 2D anti-

ferromagnetic hexagonal leads, as shown in Fig. 3(a), with
those of nonmagnetic graphene and 2D ferromagnetic
hexagonal leads, which have previously been reported in
the literature [14,18].
In Fig. 3(b), we plot the nonlocal conductance of an

NM-S-NM heterostructure, where NM is a graphene layer,

FIG. 2. The “relativistic” dispersions of itinerant electrons in
2D antiferromagnetic hexagonal lattices in the leads AF0 and AF1
are shown to the left and right, respectively. Electrons (holes) are
denoted by red (blue) circles. It is possible to block both AR and
CT signals to favor CAR signals by tuning the local Fermi energy
close to the gap induced by the antiferromagnetic exchange
interaction (gray region).
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by setting J ¼ 0 in the BdG Hamiltonian (1). In this
case, AR and CT are completely suppressed only at eV ¼
EF < Δ0 [18]. For other bias voltages, competition among
the AR, CT, and CAR signals occurs, which, for certain
parameters, can lead to a negative nonlocal conductance, as
shown in Fig. 3(b). In contrast, the nonlocal conductance in
the AF-S-AF junction is negative for all subgap voltages
under the conditions EF ¼ J and EF=Δ0 > 1=2. In the
NM-S-NM junction, the CAR dominant signal is predicted
only when the local Fermi energy is smaller than the
superconducting gap. In this regime, inevitable spatial
fluctuations in the carrier density, and consequently, the
local Fermi energy, in graphene layers are larger than the
superconducting gap and hinder experimental detection of
CAR signals [44,64]. In sharp contrast, in the AF-S-AF
junction, a CAR-dominant signal can be observed when the
local Fermi energy is larger than the superconducting gap.
We therefore expect experimental detection of the CAR-
dominant signal to be considerably easier in AF-S-AF
junctions than in 2D NM-S-NM junctions.

In 2D hexagonal FM-S-FM junctions, when the mag-
netization vectors in the two leads are parallel (antiparallel)
and both leads have the same charge doping, the CT (CAR)
signal dominates the total nonlocal conductance only if the
ferromagnetic exchange energy is equal to the local Fermi
energy and much larger than the superconducting gap [14].
These features are demonstrated in Fig. 3(c), where we plot
the nonlocal conductance of a 2D FM-S-FM junction in the
antiparallel configuration. As shown in the SM [62],
the sign of the total nonlocal conductance in FM-S-FM
junctions is very sensitive to the angle between two
magnetization vectors in the leads, in contrast to the
robustness of the sign of the total nonlocal conductance
in the antiferromagnetic case. We also emphasize that in 2D
hexagonal FM-S-FM junctions, a CAR-dominant regime is
only achieved when the exchange interaction is fine-tuned
to the Fermi energy of the ferromagnetic lead. However, in
this regime, the density of states for minority spins is
negligible, and thus, the electron spins in the two ferro-
magnetic leads cannot be totally entangled. In the anti-
ferromagnetic leads, the spins are degenerate and truly
spin-entangled particles can be generated in two spatially
separated leads.
Finally, we comment on the CAR-dominated signal in

the AF-S-AF junction when we relax the conditions EF ¼ J
and EF=Δ0 > 1=2 but still maintain J0 ¼ J1 ¼ J such that
both AR and CT are simultaneously nonzero. Figure 4
shows a sketch of the regions in the parameter space
ðEF; JÞ, where CT and CAR contribute to the nonlocal

FIG. 3. The total nonlocal conductance in CAR-dominant
configurations as a function of the applied voltage bias for
different 2D hexagonal heterostructures. (a) An AF-S-AF system
with parallel Néel vectors and opposite charge doping in the
leads, (b) an NM-S-NM system with opposite charge doping in
the leads, and (c) an FM-S-FM system with antiparallel mag-
netization vectors and the same charge doping in the leads. The
inset in (a) shows the angular dependence of the nonlocal
conductance versus the misalignment between the Néel vectors
in the two leads δγ ¼ arccos ðn0 · n1Þ, with an applied voltage
bias eV=Δ0 ¼ 0.5. In all figures, we have set the AF (FM) s-d
exchange interaction equal to the Fermi energy in both leads.

FIG. 4. Plot of the parameter space ðEF; JÞ of the total nonlocal
conductance. In the blue region, the CAR signal dominates. In the
beige regions, the CAR signal competes with CT. In the red
region, the antiferromagnetic leads are insulating, and the
conductance vanishes. J ¼ 0 and EF ¼ 0 represent limits in
which the leads are nonmagnetic graphene and undoped AFs,
respectively.
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conductance in the subgap regime eV=Δ0 < 1. We can
achieve perfect CAR if the deviation of the gate-controlled
local Fermi energy EF from the antiferromagnetic exchange
energy J is smaller than the voltage bias, as shown in the
light blue region. For larger deviations, as shown in the beige
region, competition between CT and CAR determines the
sign of the nonlocal conductance. Gradually, CT dominates,
resulting in positive nonlocal conductance for large devia-
tions. If the exchange interaction is significantly larger than
both the local Fermi energy and the voltage bias, then the
system behaves as an insulator with zero conductance, as
demonstrated by the red region. In the SM [62], we plot the
nonlocal conductance for specific material parameters,
demonstrating the general behavior shown in Fig. 4.
Concluding remarks.—We develop a general framework

for nonlocal transport in a 2D AF-S-AF heterostructure.
Perfect CAR is possible using a gate voltage to tune the
local Fermi energy close to the exchange strength, while the
two antiferromagnetic leads have opposite charge doping.
Our finding is quite generic for an important class of
collinear two-sublattice AF materials with either hexagonal
or square lattice structure. We propose a concrete exper-
imental requirement: the local Fermi energy deviation from
the antiferromagnetic exchange strength should be smaller
than the voltage bias. Typical values for the s-d exchange
interaction can vary from meV to eV [65,66], the super-
conducting gap is typically on the meV scale [44,67], and
the Fermi energy can be tuned by a gate voltage. Hence, 2D
antiferromagnetic-based heterostructures exhibit highly
electrically controllable Cooper pair splitting in a spin-
degenerate system and enable the production of truly
entangled electron pairs in solid-state quantum entangle-
ment devices.
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