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We investigate the specific heat c, near an Ising nematic quantum critical point (QCP), using sign
problem-free quantum Monte Carlo simulations. Cooling towards the QCP, we find a broad regime of
temperature where c=T is close to the value expected from the noninteracting band structure, even for a
moderately large coupling strength. At lower temperature, we observe a rapid rise of c=T, followed by a
drop to zero as the system becomes superconducting. The spin susceptibility begins to drop at roughly the
same temperature where the enhancement of c=T onsets, most likely due to the opening of a gap associated
with superconducting fluctuations. These findings suggest that superconductivity and non-Fermi liquid
behavior (manifested in an enhancement of the effective mass) onset at comparable energy scales. We
support these conclusions with an analytical perturbative calculation.
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Introduction.—Understanding the continuous formation
of order in a Fermi liquid remains a central challenge in the
study of strongly correlated electron systems. This problem
is complicated by the presence of the gapless quasiparticles
at the Fermi surface, which makes the canonical
Landau-Ginzburg-Wilson approach of quantum criticality
inapplicable [1–8]. Pinning down the nature of metallic
quantum critical points (QCPs) in the case of two spatial
dimensions (which is relevant to many quantum materials)
has proven particularly challenging [9–26].
The metallic state in the vicinity of the QCP may follow

one of two distinct scenarios [22,29,30]. In the first
scenario, a non-Fermi liquid (NFL) metal emerges near
the QCP, where electronic quasiparticles become strongly
incoherent due to their strong scattering off the critical
fluctuations of the order parameter. In the second scenario,
superconductivity mediated by the same critical fluctua-
tions gaps the Fermi surface before the non-Fermi liquid
develops, and as a result the normal state in the quantum
critical regime is a Fermi liquidlike state with coherent
quasiparticles. A successful description of the critical metal
has to take into consideration these two competing effects
on the same footing. The resulting multichannel strong
coupling problem is currently not amenable to a controlled
analytical approach.
A salient feature expected for a nearly-critical Fermi

liquid, along with the enhancement of quasiparticle scatter-
ing, is a divergence of the effective mass, m� [3]. Such a
divergence can be probed either by measuring the specific
heat coefficient at low temperatures, c=T ∝ m� [31–34], or
by other means, such as by measurements of de Haas–van
Alphen oscillations [35,36]. For example, in the case
where the quantum critical fluctuations carry near-zero
momentum, a power law divergence of the specific heat is
expected; within the random phase approximation (RPA),

c=T ∼ T−1=3 [37]. However, the divergence of c=T may be
preempted by a transition to a superconductor. The main
question addressed in this work is whether the quantum
critical regime above the superconducting Tc is charac-
terized by a pronounced enhancement of c=T upon
approaching the QCP.
In recent years, it has been demonstrated that models for

quantum critical metals can be efficiently simulated using
the numerically exact determinant quantum Monte Carlo
(DQMC) method without suffering from the notorious
fermion sign problem [38–50]. Here, we report the first
DQMC results for the specific heat of a metallic Ising-
nematic QCP at which a discrete C4 rotation symmetry is
spontaneously broken.
Previous works on this model focused on the self-energy

and transport properties, finding signatures of the break-
down of Fermi liquid behavior, in an extended temperature
window above the superconducting critical temperature Tc
near the QCP [51]. Interestingly, we find that the specific
heat in the same temperature regime is close to the
noninteracting value down to a temperature ∼2Tc, which
we identify as the onset of superconducting fluctuations,
probed by the opening of a spin gap. Thus, the specific heat
does not exhibit a broad non-Fermi liquid regime
near the QCP. Inspired by the perturbative structure of
the theory, we propose a resolution to this apparent
discrepancy between the transport and thermodynamic
properties.
Model and method.—The model is defined on a

two-dimensional square lattice with a single (spinful)
fermionic state per lattice site and a pseudospin 1=2
boson on each nearest-neighbor bond [Fig. 1(a)] [40].
The system is described by the Hamiltonian H ¼ Hf þ
Hb þHint with

PHYSICAL REVIEW LETTERS 127, 017601 (2021)

0031-9007=21=127(1)=017601(6) 017601-1 © 2021 American Physical Society

https://orcid.org/0000-0002-7096-5137
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.017601&domain=pdf&date_stamp=2021-06-30
https://doi.org/10.1103/PhysRevLett.127.017601
https://doi.org/10.1103/PhysRevLett.127.017601
https://doi.org/10.1103/PhysRevLett.127.017601
https://doi.org/10.1103/PhysRevLett.127.017601


Hf ¼ −t
X
hi;ji;σ

ψ†
i;σψ j;σ − μ

X
i;σ

ψ†
i;σψ i;σ;

Hb ¼ V
X

hhi;ji;hk;lii
τzi;jτ

z
k;l − h

X
hi;ji

τxi;j;

Hint ¼ αt
X
hi;ji;σ

τzi;jψ
†
i;σψ j;σ: ð1Þ

Here, ψ†
i;σ creates a fermion on site i of spin σ ¼ ↓;↑, hi; ji

denote nearest-neighbor bonds, and t, μ are the hopping
amplitude and chemical potential, respectively. The pseu-
dospins, represented by the Pauli matrices τα¼x;y;z

i;j , are
governed by a transverse field Ising model. The interaction
strength between spins on nearest-neighbor bonds
hhi; ji; hk; lii is given by V > 0, h sets the transverse field
strength, and α is the dimensionless coupling strength
between the pseudospins and the fermions. Physically, the
pseudospins can originate from a purely electronic inter-
action via Hubbard-Stratonovich transformation, or from
bosonic degrees of freedom such as phonons. More
importantly, the model is designed to host an Ising nematic
critical point, which separates an ordered phase, where the
C4 rotational symmetry of the lattice is spontaneously
broken, from a C4 symmetric phase. In the ordered phase,
the expectation value of τz on horizontal bonds becomes
different from that of τz on vertical bonds, breaking the 90°
rotational symmetry of the lattice. The transition can be
tuned by the transverse field h, and remains continuous
down to low temperature [40,51].
We use the ALF package [52], a general implementation

of the auxiliary field quantum Monte Carlo algorithm
[53,54], to solve the Hamiltonian from above. The neg-
ative-sign problem is absent due to time-reversal symmetry
for each space-time configuration of τzi;j. Global updates of
the boson fields, that are constructed according to the Wolf
algorithm [55], are used to shorten both the autocorrelation
and thermalization times. An artificial orbital magnetic

field that couples oppositely to spin up and spin down
electrons, corresponding to one flux quantum in the entire
system, is applied to reduce finite size effects [40,56].
For more details of the QMC implementation, see
Refs. [40,57]. The specific heat c may be evaluated from
(i) the numerical derivative of the energy, c ¼ dhHi=dT, or
(ii) the fluctuations of the energy, c ¼ β2ðhH2i − hHi2Þ,
where β ¼ 1=T [62]. In our model, we found that approach
(i) converges much faster than (ii) [57].
In the following, we focus on two parameter sets,

ðα ¼ 1.5; V=t ¼ 0.5Þ and ðα ¼ 1; V=t ¼ 1Þ. The chemical
potential is fixed to μ=t ¼ −1. We point out that there is a
van Hove singularity in the band dispersion at μ ¼ 0. In
the Supplemental Material [57] we present results for
α ¼ 1; μ=t ¼ −0.5, where effects of the proximity to the
van Hove singularity are more pronounced. We use t as the
unit of energy in the remainder.
Results.—We begin by reviewing the phase diagram for

the model of Eq. (1), described in Refs. [40,51]. To locate
the nematic phase transition, we examine the nematic
susceptibility

χðh; TÞ ¼ 1

L2

X
i;j

Z
β

0

dτhNiðτÞNjð0Þi; ð2Þ

with the nematic order parameter Ni ¼
P

j ζijτ
z
ij,

where ζij ¼ 1=4 for rij ¼ �x̂ [blue squares in
Fig. 1(a)], ζij ¼ −1=4 for rij ¼ �ŷ [red squares in
Fig. 1(a)], and ζij ¼ 0 otherwise. L is the linear system
size. We present the inverse susceptibility as a function of
temperature in Fig. 2 for three transverse field values h and
two coupling strengths α. The nematic fluctuations are
enhanced as the temperature is reduced. χ−1 saturates for
the larger values of h, which indicates a nematic-disordered
ground state, while the susceptibility nearly diverges
(χ−1 → 0) for the lowest transverse field strength signalling
a nematically ordered phase. The critical transverse field

(a) (b) (c)

FIG. 1. (a) Visualization of the model Hamiltonian. (b),(c) c=T as a function of temperature at various h values, for different coupling
constants: (b) α ¼ 1.5, V ¼ 0.5, and (c) α ¼ 1, V ¼ 1. In both cases, μ ¼ −1 and L ¼ 12. The solid line is c=T of the noninteracting
tight binding model. The inset shows the phase diagram in the ðh; TÞ plane. For α ¼ 1.5, the black line shows the superconducting Tc vs
h. For α ¼ 1, we estimate Tc ≲ 0.02 at h ≈ hc.
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hcðTÞ at a given temperature T is determined by a finite size
scaling analysis, assuming classical 2D Ising critical
exponents [57], and the resulting phase diagram is shown
in the inset of Fig. 1 for the two different values of α. The
quantum critical point is located at hc ¼ limT→0 hcðTÞ. The
superconducting transition temperature Tc, extracted from
a scaling analysis of the s-wave pairing susceptibility [57],
also appears in the insets of Fig. 1 for α ¼ 1.5. For α ¼ 1,
the maximal Tc is smaller than 0.025 [57] and is not shown.
We now turn to the specific heat cðTÞ at and away from

the QCP. Figures 1(b), 1(c) show c=T for α ¼ 1.5, 1
respectively. At high temperatures, c=T is close to the
value computed from the noninteracting tight-binding
model (solid line) [63]. The broad maximum in the
tight-binding curve at T ≈ 0.25 is due to the van Hove
singularity in the band structure. In the stronger coupling
case (α ¼ 1.5), a pronounced peak appears in c=T at low
temperatures. At h ¼ 2.6 ≈ hc, the peak position occurs at
Tpeak ¼ 0.12� 0.02, which is slightly above the super-
conducting transition at Tc ¼ 0.1� 0.02. We note that,
since the superconducting transition is of the Berezinskii-
Kosterlitz-Thouless type, the singularity of c at Tc should
be very weak, and hence Tpeak is not generally expected to
coincide with Tc. Upon increasing h, the peak shifts to a
lower temperature.
At the weaker coupling strength (α ¼ 1), such a clear

peak is absent. At the lowest temperatures, there is an
enhancement of the specific heat relative to the tight-
binding model. This enhancement is most pronounced near
the QCP. It is likely that c=T drops to zero at even lower
temperatures, resulting in a finite-T peak in c=T, as in the
α ¼ 1.5 case.
An enhancement in c=T may originate either from an

opening of a gap in the quasiparticle spectrum or from an

increase of the quasiparticle effective mass [64]. Evidently,
for α ¼ 1.5, the peak in c=T [Fig. 1(b)] appears both near
the QCP and away from it, hence is likely not caused by an
enhancedm� due to quantum critical fluctuations. The shift
of the peak position upon increasing h mirrors the decrease
of the superconducting critical temperature, suggesting that
the superconducting gap opening is the main source of the
peak in c=T. The situation is less clear for the weaker
coupling α ¼ 1 [Fig. 1(c)], where a significant enhance-
ment of c=T is only detectable near h ¼ hc.
In order to identify the origin of the low-temperature

enhancement of the specific heat, we study the spin
susceptibility,

χSz ¼
1

L2

X
i;j

Z
β

0

dτhŜzi ðτÞŜzjð0Þi; ð3Þ

where Ŝzi ¼ 1
2
ðψ†

i;↑ψ i;↑ − ψ†
i;↓ψ i;↓Þ. χSz is shown in Fig. 3.

The spin susceptibility is roughly constant for T > 0.2
(T > 0.1) for α ¼ 1.5 (α ¼ 1). As the temperature is
lowered further, χSz begins dropping dramatically, consis-
tent with the opening of a spin gap.
The temperature where the suppression of χSz onsets is

comparable to the temperature at which c=T begins to rise
(Fig. 1). This leads to an interpretation of both the
enhancement of c=T and the suppression of χSz as a
signature of an opening of a gap, most likely associated
with superconducting fluctuations. Further evidence for
this interpretation is provided by a rapid growth of the
superconducting susceptibility and a suppression of the
single-particle density of states near the Fermi level, which
both onset at a similar temperature [57]. Note that this
implies that the gap at h ≈ hc onset at a temperature
significantly larger than the superconducting critical tem-
perature, Tc ≈ 0.1 for α ¼ 1.5 (marked by black arrows in
Fig. 3(a), and Tc ≲ 0.02 for α ¼ 1 [57]. Such a regime is
commonly referred to as a “pseudogap regime” (or a regime
of “preformed Cooper pairs” without long-range phase
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FIG. 2. The inverse nematic susceptibility (1=χ) as a function of
temperature, for two different system sizes (L ¼ 10, 12). In
(a) for α ¼ 1.5 and in (b) for α ¼ 1. The linear behavior of 1=χ as
a function of T (orange), at h ≈ hc, is extended to lower
temperatures for α ¼ 1. This can be a consequence of the lower
Tc at α ¼ 1, and therefore the fermions are gapped out at lower
temperatures. The arrows (black) indicate the superconducting Tc
obtained from Ref. [51] for α ¼ 1.5.
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FIG. 3. The spin susceptibility χSz as a function of temperature
at various h values for the two different coupling constants. In
(a) for α ¼ 1.5 and in (b) for α ¼ 1. As before, the arrows (black)
indicate the superconducting Tc obtained from Ref. [51] for
α ¼ 1.5. The system size is L ¼ 12.
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coherence). This behavior is in contrast to the expectation
from weak-coupling mean-field theory, which predicts a
gap that onsets concomitantly with Tc, but is in agreement
with prior QMC results in models of quantum critical
metals at intermediate to strong coupling [39,51].
The temperature range where χSz is approximately con-

stant, above the onset of the spin gap, can be interpreted in
terms of a Fermi liquid. This interpretation is supported by
the fact that, in the same regime, c=T is not strongly
temperature dependent, as shown in Fig. 1 (and its temper-
ature dependence can mostly be ascribed to band structure
effects). In addition, the single-particle density of states at
the Fermi level is found to beweakly temperature dependent
in the same regime [57]. Within Fermi liquid theory,
c=T ∝ m�, the single-particle density of states is propor-
tional to Zm�, where Z is the quasiparticle weight [65], and
χSz ¼ π−2ð1þ Fa

0Þ−1kFm�. Here, Fa
0 is the isotropic, spin-

antisymmetric component of the Landau quasiparticle
interaction. Hence, at temperature above the onset of a spin
gap, we can explain our data qualitatively by assuming that
for α ¼ 1, Z ≈ 1 and Fa

0 is small. For α ¼ 1.5, in contrast, Z
decreases substantially and Fa

0 grows as h approaches hc.
Combining the above arguments suggests the following

picture for the behavior at h ≈ hc: (i) In a broad temperature
range below the Fermi energy EF, the system’s thermo-
dynamic properties are roughly consistent with Landau’s
Fermi liquid theory. (ii) Below a certain temperature,
smaller than EF but significantly larger than the super-
conducting Tc, c=T is enhanced, more or less concomi-
tantly with a suppression of the spin susceptibility and the
single-particle density of states. All these effects are most
probably due to the onset of a gap due to superconducting
fluctuations. (iii) At the lowest temperatures (below Tc)
superconductivity is established.
Perturbation theory.—It is useful to relate our findings at

strong coupling with the results of the standard RPA
analysis [37]. The perturbative calculation is controlled
in the limit of a large number N of fermion species (the
physical value is N ¼ 2) and not too low temperatures, as
discussed below. For simplicity, we consider a system with
dispersion εðkÞ ¼ k2

2m − μ. The four-fermion interaction is
taken to be of the form

Uðq; k; k0Þ ¼ g2fk−q=2fk0þq=2

Nðr0 þ jqj2Þ ; ð4Þ

where q is the momentum transfer, g2 is the coupling
strength, and fk is the nematic form factor:
fk ¼ cos kx − cos ky. The parameter r0 is used to tune
the system to the QCP, which occurs at r0 ¼ rc > 0.
At r0 ¼ rc, the specific heat is given by [57]

cðTÞ ¼ π

6
mNT

�
1þ A

N

�
g4

EFT

�1
3 þO

�
1

N2

��
; ð5Þ

where A ≈ 0.19. The second term in the square brackets in
Eq. (5) describes the enhancement of the specific heat due
to quantum critical fluctuations. This term becomes
significant compared to the first (noninteracting) term at
a temperature TNFL ∝ g4=N3EF. TNFL is the temperature
below which electrons lose their coherence, and the Fermi
liquid description breaks down. At the same temperature,
terms which are naively of higher order in 1=N become
parametrically enhanced, and the 1=N expansion is no
longer controlled [16,17,66]. Moreover, solving the linear-
ized Eliashberg equation for the pairing vertex gives that
Tc ∝ TNFL [57,67]. Thus, the weak coupling analysis
predicts no parametric separation in temperature between
the breakdown of Fermi liquid theory (manifested as a
divergence of c=T) and the onset of a pairing gap. This
conclusion is corroborated by an RPA analysis of a lattice
model including the full tight-binding dispersion [Eq. (1)],
showing no significant deviation of c=T relative to the
noninteracting value for T ≳ 0.2 [57]. These observations
mirror the picture that emerges at moderate to strong
coupling from our QMC results, i.e., the enhancement of
c=T, relative to the value expected from the band structure,
onsets at the same temperature where a pairing gap appears.
Discussion.—In this work, we have examined the spe-

cific heat in the vicinity of a quantum critical point in a
metal, using unbiased, numerically exact QMC simula-
tions. We find that, upon cooling the system towards the
quantum critical point, c=T is enhanced relative to the band
structure value. The enhancement of c=T onsets at roughly
the same temperature where the spin susceptibility and the
single-particle density of states exhibit a downturn, signal-
ing the appearance of a gap, most likely due to the onset of
superconducting fluctuations. c=T is suppressed sharply
upon entering the superconducting phase that covers
the QCP.
Thus, our main conclusion is that within our model, there

is no broad non-Fermi liquid regime characterized by a
diverging c=T near the QCP. This is most probably because
the quantum critical enhancement of c=T is preempted by
the opening of a pairing gap. These observations are
qualitatively consistent with the expectation from the
weak-coupling RPA analysis, which predicts that TNFL
and Tc are of the same order of magnitude. However, in our
simulations (performed in moderate to strong coupling) we
find that the gap due to superconducting fluctuations
appears at a temperature significantly above Tc, in contrast
to the weak-coupling analysis in which the superconduct-
ing transition is essentially mean-field-like.
Above the gap opening temperature, we find a broad

temperature regime where c=T shows no significant
enhancement relative to the band structure value. This is
surprising, since in this model, the same temperature
regime has been shown to exhibit strong deviations from
Fermi liquid theory in the frequency dependence of the
self-energy and the temperature dependence of the
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transport scattering rate [51,68]. This apparent discrepancy
can be understood from the fact that, in this regime, the
quasiparticles are still coherent [in the sense that their self-
energy ΣðiωnÞ is smaller than ωn, even at the smallest
Matsubara frequency [57] ], and the effective mass is not
significantly enhanced. However, the self-energy (and
hence the scattering rate) has a non-Fermi liquid tempera-
ture dependence [69–71].
We end with two comments regarding the implications of

our study for experiments in quantum materials. First, our
results imply that observing a divergence ofm� near a QCP
generally requires suppressing superconductivity, e.g., by
applying a magnetic field (which is unfortunately impos-
sible in our simulations without introducing a fermion sign
problem). Second, it is interesting to note that in FeSe1−xSx,
a broad regime of quasilinear resistivity is observed near
the putative nematic QCP [72–74] with no accompanying
discernible enhancement ofm� [75]. These findings may be
explained by the presence of coherent quasiparticles
scattered by quantum critical fluctuations, analogous to
the behavior found in our model.
The auxillary field QMC simulations were carried out

using the ALF package [76].
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