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Electrons on the helium surface display sharp resonant absorption lines related to the transitions between
the subbands of quantized motion transverse to the surface. A magnetic field parallel to the surface strongly
affects the absorption spectrum. We show that the effect results from admixing the intersubband transitions
to the in-plane quantum dynamics of the strongly correlated electron liquid or a Wigner crystal. This is
similar to the admixing of electron transitions in color centers to phonons. The spectrum permits a direct
characterization of the many-electron dynamics and also enables testing the theory of color centers in a
system with controllable coupling.

DOI: 10.1103/PhysRevLett.127.016801

Electrons above the surface of liquid helium are local-
ized in a one-dimensional potential well, which is formed
by the high repulsive barrier at the surface and the image
potential. The energy levels in the well are quantized.
The electrons occupy the lowest level forming a two-
dimensional system [1,2]. The spectroscopic observation of
transitions between the quantized energy levels [3] was a
direct proof of the picture of the electron confinement and
the overall nature of the potential. Since then much work
has been done on the exact positions and the widths of the
spectral lines and their dependence on the temperature and
the electron density [4–12].
The electron system on helium is free from static

disorder. It is also weakly coupled to the vibrational
excitations in helium, ripplons and phonons. The observed
spectral lines are narrow, with width as small as ∼2 MHz
for T ¼ 0.3 K [8]. In the nomenclature of the solid-state
spectroscopy they correspond to zero-phonon lines. Such
lines in the spectra of point defects result from transitions
between the defect energy levels with no energy transfer
to or from phonons [13]. The physics of point defects and
the defect spectroscopy have been the focus of attention
recently in the context of quantum computing and quantum
sensing [14]. On their side, electrons on helium themselves
have been also considered as a viable candidate system for
a scalable quantum computer [15–19].
One of the major attractive features of electrons on

helium is the possibility to study many-electron effects. The
electron-electron interaction is strong, the ratio of its energy
to the electron kinetic energy is Γ ¼ e2ðπnsÞ1=2=kBT > 30

for the electron density ns ≥ 107 cm−2 and T ≤ 0.3 K. The
electrons form a Wigner crystal [20,21] or a classical
or quantum nondegenerate liquid with unusual transport
properties, cf. Refs. [22–29] and references therein.
Spectroscopy would be expected to provide a most detailed

insight into the correlated many-electron dynamics.
However, the only spectral effect of the electron-electron
interaction studied so far is a small density-dependent
line shift [5,10].
In this Letter we show that, by applying a magnetic field

along the helium surface, one can use spectroscopy to study
quantum dynamics of a nondegenerate electron liquid and a
Wigner solid. Importantly, in the cases where this dynamics
has been already understood, the system can serve as a
quantum simulator of color center spectroscopy, with the
unique opportunity of controlling the strength of the
coupling of the electron transition and many-body excita-
tions in the system. The importance of such simulations
follows from the broad applications of color centers,
including the color centers in diamond such as NV centers,
cf. Refs. [14,30,31].
The change of the interband absorption spectrum by an

in-plane magnetic field has been studied for degenerate
quasi-two-dimensional electron systems in semiconduc-
tors, see Ref. [32] and references therein. The results were
interpreted in the mean-field approximation. The field-
induced high-temperature spectral broadening was also
reported for electrons on helium [33,34]. Here we show
that, for electrons on helium in the quantum regime, the
spectrum is qualitatively different from what the mean-field
theory predicts. It has to be analyzed using an approach
that explicitly takes into account the interplay of the
strong correlations and fluctuations in the quantum electron
system.
The effect of the parallel magnetic field on the electron

spectrum and the similarity with the physics of color
centers can be understood from Fig. 1. We choose the z
axis as the direction of quantized motion normal to the
surface. In different quantized states of the out-of-plane
motion jμi the electron is at a different average distance

PHYSICAL REVIEW LETTERS 127, 016801 (2021)

0031-9007=21=127(1)=016801(6) 016801-1 © 2021 American Physical Society

https://orcid.org/0000-0003-3996-7932
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.016801&domain=pdf&date_stamp=2021-06-28
https://doi.org/10.1103/PhysRevLett.127.016801
https://doi.org/10.1103/PhysRevLett.127.016801
https://doi.org/10.1103/PhysRevLett.127.016801
https://doi.org/10.1103/PhysRevLett.127.016801


from the surface. If a magnetic field Bk is applied parallel to
the surface, an interstate transition leads to the electron shift
transverse to Bk. Therefore the electron in-plane momen-
tum is changed by the Lorentz force in the ẑ ×Bk direction.
For the transition j1i → j2i from the ground to the first
excited state the change ΔpB is

ΔpB ¼ mωkΔz; Δz ¼ z̄22 − z̄11;

ωk ¼ eBk=mc; z̄μμ ¼ hμjzjμi ðμ ¼ 1; 2Þ: ð1Þ

Thus the minima of the energy bands ε1ðpÞ and ε2ðpÞ of the
in-plane motion (p is the in-plane momentum) are shifted
with respect to each other. We assume mω2

kΔ
2
z ≪ ε21≡

min½ε2ðpÞ − ε1ðpÞ�.
The right panel of Fig. 1 has the familiar form of the

sketch of the energy of a point defect coupled to a
vibrational mode in a crystal [13]. In the case of a defect,
the horizontal axis is the coordinate of the vibrational
mode, and the parabolas show the potential energy of
the mode in the two electron states with the energy
difference ε21. The zero-phonon spectral line corresponds
to a transition at frequency ε21=ℏ between the minima of
the parabolas. The vertical transition from the minimum of
the lower parabola (the Franck-Condon transition) occurs at
a higher energy. Usually the electron is coupled to many
modes (phonons), which significantly complicates the
analysis, as has been known since the work of Pekar
[35] and Huang and Rhys [36].
In distinction from a defect, the parabolas in Fig. 1 show

the single-electron energy as a function of the in-plane
momentum. In a strongly correlated electron system the
momentum can be transferred to other electrons. Such
recoil reminds us of the recoil from the absorption of a

gamma-quantum by an impurity in a crystal, which under-
lies the Mössbauer effect. By analogy with the Mössbauer
effect and the spectra of color centers, the absorption
spectrum of electrons on helium should strongly depend
on the in-plane many-electron dynamics.
To analyze the spectrum in the presence of strong electron

correlations, one should start with the full Hamiltonian of the
system. It is a sum of the termsHk; H⊥, andHi that describe,
respectively, the in-plane motion, the motion normal to the
helium surface in the image potential [1,2], and the coupling
of these two motions by the in-plane field Bk ≡ Bx. In the
presence of a magnetic field B⊥ ≡ Bz normal to the surface

H ¼ Hk þH⊥ þHi;

Hk ¼
X

n

π2
n

2m
þ 1

2

X

n;m

0 e2

jrn − rmj
;

H⊥ ¼
X

n

�
p2
nz

2m
þ UðznÞ

�
; Hi ¼

X

n

ωkπnyðzn − z̄11Þ:

Here n enumerates electrons, rn ≡ ðxn; ynÞ and πn ¼
−iℏ∇n þ ðe=cÞA⊥ðrnÞ are the in-plane electron coordinate
and kinematic momentum [A⊥ðrÞ is the vector-potential
of the field B⊥ ≡ Bz], whereas UðzÞ is the confining
potential. The leading-order part of Hi is diagonal with
respect to the states jμin of the out-of-plane motion, Hi ¼
ωkΔz

P
n πnyj2in nh2j, see Supplemental Material [37].

The frequency ε21=ℏ of the interstate transition largely
exceeds all characteristic frequencies of the in-plane
electron motion. One therefore can think of the adiabatic
approximation in which the transition j1i → j2i occurs
“instantaneously” for a given in-plane many-electron state.
The transition frequency depends on this state. It is this
dependence that determines the shape of the spectrum.
Formally, the absorption of microwaves polarized in the

z direction is determined by the real part of the conductivity
σzzðωÞ. For a nondegenerate electron system it is given by
the sum of the contributions from individual electrons, i.e.,
by the conductivity of an nth electron multiplied by the in-
plane electron density ns. From the Kubo formula

ReσzzðωÞ ¼ CσRe
Z

∞

0

dteiωth½znðtÞ; znð0Þ�i: ð2Þ

Here, Cσ ¼ e2nsω=ℏ ≈ e2nsε21=ℏ2 in the considered range
of resonant absorption.
The evaluation of the conductivity depends on whether

the electron system is a liquid or a crystal. For a Wigner
crystal the operators πn are linear combinations of the
creation and annihilation operators of the Wigner crystal
phonons, making the form of the coupling Hi and the
problem as a whole largely the same as that of the spectra of
color centers [37]. However, in our experiment the electron
system is a strongly correlated liquid in a strong transverse

FIG. 1. Left: The many-electron system on helium in a
magnetic field with components parallel (Bk ≡ Bx) and
perpendicular (B⊥ ≡ Bz) to the helium surface. Right: The
energy spectrum of an electron in the two lowest bands of
motion normal to the surface. The energy difference between the
bands ε21 is the distance between the levels of the quantized
motion along the z axis. The single-electron kinetic energy of
motion along the surface is quadratic in the in-plane momentum p
for B⊥ ¼ 0. The field B⊥ transforms the spectrum into the
Landau levels, which are broadened by the electron-electron
interaction. The field Bk shifts the bands of the in-plane motion
by ΔpB, see Eq. (1).
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magnetic field B⊥. In such a field the in-plane electron
motion is a superposition of a fast quantized cyclotron
motion at frequencies ∼ωc ¼ eB⊥=mc and a slow
semiclassical drift of the guiding centers of the cyclotron
orbits. The drift comes from the fluctuational electric
field caused by the electron density fluctuations. The field
on an nth electron is En ¼ −e

P0
mðrn − rmÞ=jrn − rmj3.

It varies on the timescale ωc=ω2
p ≫ ω−1

c , where ωp ¼
ð2πe2n3=2s =mÞ1=2 [22].
The timescale separation allows describing the peak of

the absorption spectrum of the electron liquid in an explicit
form [37]. It is convenient to single out in the integrand in
Eq. (2) the factor that oscillates at the resonant frequency,
h½znðtÞ; znð0Þ�i ¼ jh1jzj2ij2 expð−iε21t=ℏÞQðtÞ. The func-
tion QðtÞ describes the effect of the in-plane many-electron
dynamics,

QðtÞ ¼ eiδkt exp½−ðγ2=2ÞwðtÞ�;
δk ¼ mω2

kΔ
2
z=2ℏ; γ2 ¼ δkω2

pkBT=2πℏω2
c;

wðtÞ ¼ ðn3=2s kBTÞ−1
ZZ

t

0

dt1dt2hEnðt1ÞEnðt2Þi: ð3Þ

We assumed Gaussian distribution of the fluctuational
field En. In a broad parameter range relevant for the
experiments on electrons on helium hE2

ni≈FðΓÞn3=2s kBT,
where FðΓÞ ≃ 9.
If the coupling to the in-plane fluctuations is strong,

γ ≫ ω2
p=ωc, from Eq. (3) the main part of the absorption

spectrum (2) is a Gaussian peak, reminiscent of the
spectrum of color center. The typical width of the peak
in the frequency units is γFðΓÞ1=2.
The absorption spectrum also has an analog of the zero-

phonon line. It is described by the long-time behavior
of wðtÞ and dominates the spectrum for small Bk. In the
electron liquid the line is Lorentzian with a half-width
which, unexpectedly, is determined by the self-diffusion
and is equal to mδkD=2, where D is the self-diffusion
coefficient [37]. One can switch from a Lorentzian to a
Gaussian spectrum by increasing the field Bk.
In the experiment, the absorption spectrum is measured

by varying the electric field Ez applied perpendicular to the
helium surface, using that the level spacing ε21 linearly
depends on Ez within the linewidth. In the units of Ez, the
typical width of the Gaussian peak is

δEz ¼
Bk

B⊥
ffiffiffi
2

p ½kBTn3=2s FðΓÞ�1=2: ð4Þ

All parameters in Eq. (4) can be controlled in the experi-
ment. This enables testing the theoretical prediction with
high accuracy.
We measured the change of the low-frequency

helium cell admittance Y due to absorption of microwave

radiation, as explained in the Supplemental Material [37].
Such photoassisted transport spectroscopy provides a
sensitive way to measuring resonant microwave absorption
[10]. The method has been used to study the rich out-of-
equilibrium physics and a variety of nontrivial nonlinear
effects associated with moderately strong resonant micro-
wave excitation of the electron system [10,12,27,28]. Here
we focus on the linear response. The microwave power was
attenuated down to μW levels. The experimental technique
used here is very close to [12], however, improvements
were made to work at very low microwave power and to
ensure that the helium filling level in the sample cell was
close to 50% to provide a good compensation between the
electric field created by the top and bottom image charges.
These steps are described in detail in the Supplemental
Material [37].
The spectra of the resonant j1i → j2i photoexcitation are

shown in Fig. 2. For Bk ≳ 0.4 T, where the strong-coupling
condition holds, the observed shape of the spectra is very
well described by a Gaussian fit (dashed lines) with the
variance δEz given by Eq. (4), with no fitting parameters.
The overall area of the spectral peaks is determined by the
photoassisted transport response of electrons on helium,
which depends on Bk; the discussion of this dependence is
beyond the scope of this Letter.
In Fig. 3 we show the linewidth δEz as a function of Bk

for several refrigerator temperatures. The observed linear
dependence quantitatively agrees with Eq. (4) in the
strong-coupling regime, which corresponds to BkT1=2 ≳
0.15 T × K1=2, for the used ns and B⊥. The linewidth
at Bk ¼ 0 is attributed to residual inhomogeneous
broadening in our system. The linear fits to the data at
different temperatures all intersect near Bk ¼ 0, supporting
this interpretation. The inset shows the ratio δEz=Bk
as a function of the square root of the temperature.
The black line depicts this ratio as given by Eq. (4)
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FIG. 2. The spectra of the relative microwave-induced change
of the low-frequency admittance Y for different Bk ≡ Bx. The
data refer to the microwave frequency f ¼ 150 GHz, T ¼ 0.2 K,
B⊥ ≡ Bz ¼ 0.5 T, and ns ¼ 21.5 × 106 cm−2. The ac bias is
30 mV. The dashed lines show Gaussian fit to the data with the
variance δE2

z given by Eq. (4).
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with no adjustable parameters [Eq. (4) holds for
T1=2 < ðℏωc=kBÞ1=2 ≈ 0.6 K1=2].
To further check Eq. (4) we investigated the density

dependence of the linewidth for different magnetic fields
Bk ≡ Bx and B⊥ ≡ Bz. In order to reduce the averaging
time and increase the sensitivity for small ns we used a
stronger microwave power, in the 100 μW range. This
resulted in an additional spectral broadening, which we
attribute to an effective electron temperature Te ¼ 0.6 K
(the refrigerator temperature is 0.3 K; the dependence of the
linewidth on the microwave power is shown in the inset in
Fig. 4). With this assumption the data are in full agreement
with Eq. (4). As shown in Fig. 4, ðδEzÞ2 ∝ n3=2s .

By rescaling the linewidth, we see that the results for
different Bk and B⊥ collapse onto the same curve.
The many-electron theory of the interband absorption

spectra developed in this Letter and the experimental
observations are in full quantitative agreement, with no
adjustable parameters. In contrast to the previous work on
the electron absorption spectra, the theory explicitly takes
into account strong electron correlations. The experimental
data were obtained by extending the measurements to low
microwave power, which made it possible to investigate the
spectra in the linear-response regime.
The experimental data provide the first direct measure-

ment of the fluctuational electric field which an electron is
experiencing in a nondegenerate electron liquid and which,
as we show, determines the shape of the spectrum. The
results refer to a broad range of the electron densities,
temperature, and the coupling strength of the in-plane and
out-of-plane motions, where the in-plane motion is quan-
tized by the magnetic field. Such quantization is advanta-
geous for revealing nontrivial aspects of the many-electron
dynamics in a strongly correlated two-dimensional system.
Our results demonstrate that, by applying an in-plane

magnetic field, one can directly study intimate features of
the quantum physics of an electron liquid and a Wigner
crystal. The regimes other than the one explored here
experimentally can be also investigated with the developed
technique. Those include the regime of Wigner crystal-
lization, in which case the closed-form expression for the
spectrum is obtained. Self-diffusion in the electron liquid,
which is hard to characterize otherwise, can be also
explored. Importantly, the results demonstrate that elec-
trons on helium can be used as a test bed for the quantum
theory of the effect of the electron-phonon coupling on the
optical spectra of color centers. The system provides a
unique setting where both the effective coupling strength
and the spectrum of elementary excitations coupled to the
electron transition can be varied in situ by varying the in-
plane and out-of-plane magnetic fields.
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