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We derive the general Kubo formula in a form that solely utilizes the time evolution of displacement
operators. The derivation is based on the decomposition of the linear response function into its time-
symmetric and time-antisymmetric parts. We relate this form to the well-known fluctuation-dissipation
formula and discuss theoretical and numerical aspects of it. The approach is illustrated with an analytical
example for magnetic resonance as well as a numerical example where we analyze the electrical
conductivity tensor and the Chern insulating state of the disordered Haldane model. We introduce a highly
efficient time-domain approach that describes the quantum dynamics of the resistivity of this model with an
at least 1000-fold better performance in comparison to existing time-evolution schemes.
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Introduction.—The Kubo formalism [1] is a powerful
and universal theoretical tool to connect the complex
microscopic dynamics of condensed matter systems with
their macroscopic thermodynamic properties. Within this
framework, linear susceptibilities relate any physical
observable to any other perturbing forces exerted by
the experimenter and can thus explain diverse material
properties such as electrical conductivity or magnetic
susceptibility. Many discoveries such as the quantum
Hall effects [2–5], intrinsic spin Hall effects [6,7], or
quantum spin Hall effects [8–10] have been explained
using linear response theory. In addition, it is used to
describe magnetic resonance absorption [11], the theory
of the anomalous Hall effect in the Dirac equation [12],
the bulk viscosity of quark-gluon matter [13], the
thermal conductivity of disordered harmonic solids
[14], or linear absorption spectra in metals and semi-
conductors [15].
The Kubo formalism allows for large-scale numerical

calculations to describe quantum systems, which elude an
analytical description such as complex nanoscale systems
[16–18] or when disorder or electronic correlations are
present. Great efforts were therefore spent in the last two
decades to work on efficient numerical implementations
of Kubo formulae in the field of electronic transport
[19,20]. Many numerical implementations of Kubo
formulae [21–28] have been developed to optimize the
description and better understand the transport physics of
quantum systems and connect it to macroscopic transport
phenomena and experiments. A key requirement of
efficient numerical strategies is to avoid the diagonaliza-
tion of the Hamiltonian matrix and elaborate on linear-
scaling approaches, which is particularly challenging
in the case of off-diagonal tensor components of the
response function [20].

In this Letter, we present a decomposition of linear
response functions into a time-symmetric and a time-
antisymmetric part and find that they can solely be
expressed in terms of displacement operators at equal time,
which eventually enables an efficient implementation and
computation. We relate this representation to the well-
known form of the quantum fluctuation-dissipation theo-
rem [29] that directly connects susceptibilities and power
spectra. We find a natural generalization of the description
of cross-power spectra of arbitrary pairs of perturbation
forces and response observables. This enables the efficient
description of transverse response phenomena such as Hall
effects, spin Hall effects, or other tensor quantities (e.g.,
transversal magnetization effects, anisotropic diffusion-
tensors, etc.) at the same footing as the longitudinal
response. This unified description makes the development
of specific algorithms unnecessary.
Kubo formulae.—The general Kubo formula for the

linear response of observable A in the presence of a
small but time-dependent perturbation H0ðtÞ of the quan-
tum system with the Hamiltonian Ĥ ¼ Ĥ0 þ Ĥ0ðtÞ can be
written as [1]

Trðρ̂ðtÞÂÞ¼Trðρ̂0ÂÞþ
i
ℏ

Z
t

−∞
dt0Trðρ̂0½ĤI

0ðt0Þ;ÂðtÞ�Þ; ð1Þ

with the time-dependent density operator ρ̂ðtÞ that is driven
by the unperturbed Hamiltonian Ĥ0 and the equilibrium
density operator ρ̂0 (canonical or grand canonical [30])
that describes the quantum system in the absence of the
perturbation. ĤI

0ðt0Þ ¼ eit
0Ĥ0=ℏĤ0ðt0Þe−it0Ĥ0=ℏ is the conven-

tional perturbation operator in the interaction picture and
ÂðtÞ ¼ eitĤ0=ℏÂð0Þe−itĤ0=ℏ is the Heisenberg time evolu-
tion of Â.
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If the perturbation is characterized by an arbitrary time-
dependent modulation function FðtÞ coupled to an operator
B̂ð0Þ, i.e., Ĥ0ðtÞ ¼ −FðtÞB̂ð0Þ, the general Kubo formula
reads

Trðρ̂ðtÞÂÞ ¼ Trðρ̂0ÂÞ þ
Z

∞

0

dt0Fðt − t0ÞfABðt0Þ; ð2Þ

with the response function

fABðtÞ ¼ −
i
ℏ
Trðρ̂0½B̂ð0Þ; ÂðtÞ�Þ: ð3Þ

While a great number of examples for perturbations of
this form exist, such as electric or magnetic fields, we
emphasize that the following results do not assume a
special form of the Hermitian operators Â and B̂.
Central objects in our study are the displacement operators
ΔÂðtÞ and ΔB̂ðtÞ that are defined as ΔÂðtÞ ¼ ÂðtÞ − Âð0Þ
and ΔB̂ðtÞ ¼ B̂ðtÞ − B̂ð0Þ [31]. The first result is the
following theorem.
Theorem 1.—The response function fABðtÞ can be

written in the form

fABðtÞ − fABð0Þ ¼
1

2ℏ
D−

ABðtÞ þ
1

2ℏ
tan

�
βℏ
2

d
dt

�
Dþ

ABðtÞ;

ð4Þ

where we have defined the displacement operator anti-
commutator function (DAF)

Dþ
ABðtÞ ¼ Trðρ̂0fΔÂðtÞ;ΔB̂ðtÞgÞ ð5Þ

and the displacement operator commutator function (DCF)

D−
ABðtÞ ¼ −iTrðρ̂0½ΔÂðtÞ;ΔB̂ðtÞ�Þ; ð6Þ

in which the square brackets and the curly brackets denote
the commutator and the anticommutator, respectively.
One frequently encounters a special situation, namely,

that the response function of interest reads f _ABðtÞ, i.e., it
includes an observable that is associated to a time derivative
_A. In such cases we obtain a related theorem.
Theorem 2.—Consider that, if additionally to the

assumptions of Theorem 1, the response function of interest

f _ABðtÞ contains an observable defined as _̂A ¼ ði=ℏÞ½Ĥ0; Â�,
the linear response Trðρ̂0ðtÞ _̂AÞ can be written as

Trðρ̂0ðtÞ _̂AÞ ¼
Z

∞

0

dt0Fðt − t0Þf _ABðt0Þ; ð7Þ

with

f _ABðtÞ ¼
1

2ℏ
d
dt

D−
ABðtÞ þ

1

2ℏ
tan

�
βℏ
2

d
dt

�
d
dt

Dþ
ABðtÞ: ð8Þ

The proof of the theorems is provided in the Appendix [32].
Equation (4) is a specific representation of the

linear response function fABðtÞ of an arbitrary pair of
observables A and B, whose connection to the conventional
cross-correlation function will be shown further below.
Owing to symmetry relations D−

ABðtÞ¼D−
ABð−tÞ and

Dþ
ABðtÞ¼Dþ

ABð−tÞ, the response function fABðtÞ is
expressed by a decomposition into a time-symmetric part
ftsABðtÞ ¼ fABð0Þ þD−

ABðtÞ=2ℏ and a time-antisymmetric
part ftaABðtÞ ¼ tan ðβℏ

2
d
dtÞDþ

ABðtÞ=2ℏ. We note that in the
special case of B̂ ¼ Â the response function reads

fAAðtÞ ¼ tan ðβℏ
2

d
dtÞDþ

AAðtÞ=2ℏ; while if B̂ ¼ _̂A one finds
fA _AðtÞ ¼ fA _Að0Þ þD−

A _A
ðtÞ=2ℏ. Their time evolution there-

fore depends only on either of the two functions DAF or
DCF in contrast to fABðtÞ and f _ABðtÞ where both are
required. We further emphasize that these results do not
exploit any time-symmetry properties of the operators or
observables A and B that are sometimes used to demon-
strate Onsager-Casimir relations (OCRs) [33,34], but are
independently obtained and valid even in the absence of
any time symmetry for the operators. Indeed the OCR
connects the time reversal to the exchange of the operators
(Â and B̂), a connection which will be discussed fur-
ther below.
Considering the exchange of the operators in

Eqs. (5) and (6), we trivially obtain Dþ
ABðtÞ ¼ Dþ

BAðtÞ
and D−

ABðtÞ ¼ −D−
BAðtÞ as well as ftaABðtÞ ¼ ftaBAðtÞ and

ftsABðtÞ ¼ −ftsBAðtÞ. Again this is different to the OCRs since
in the latter case a symmetry of the Hamiltonian needs to be
assumed (e.g., the magnetic field needs to be reversed),
which is not the case in the above relations. The absence
of this assumption allows us to derive this more general
approach.
Furthermore, Dþ

ABðtÞ and D−
ABðtÞ satisfy the Cauchy-

Schwarz inequality jDþð−Þ
AB ðtÞj ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dþ
AAðtÞDþ

BBðtÞ
p

as a
strict upper limit for arbitrary Â and B̂. In the special
case when B̂ ¼ Â the equality for Dþ

AAðtÞ holds. However,
for B̂ ¼ _̂A the DCF satisfies the uncertainty relation

jD−
A _A
ðtÞj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ

AAðtÞDþ
_A _A
ðtÞ

q
.

Connection to the cross-correlation function and its time
symmetry.—The quantum version of the cross-correlation
function SABðtÞ is defined by the symmetrized cross-
correlation function [29]:

SABðtÞ ¼
1

2
Trðρ̂0fB̂ð0Þ; ÂðtÞgÞ; ð9Þ

which is a real valued function in accordance with the
classical correlation function Sclass

AB ðtÞ ¼ hρ0Bð0ÞAðtÞi in
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which Bð0Þ and AðtÞ always commute. We now show that
the decomposition of SABðtÞ into its time-symmetric and
time-antisymmetric parts results in a representation with
displacement operators ΔÂðtÞ and ΔB̂ðtÞ.
Theorem 3.—Using the definitions of the DAF and the

DCF, the decomposition of SABðtÞ into its time-symmetric
and time-antisymmetric parts reads

Sts
ABðtÞ ¼ SABð0Þ −

1

4
Dþ

ABðtÞ; ð10Þ

tan

�
βℏ
2

d
dt

�
Sta
ABðtÞ ¼ −

ℏ
2
fABð0Þ −

1

4
D−

ABðtÞ: ð11Þ

The proof of Eqs. (10) and (11) is provided in the
Appendix [32]. The displacement-operator form for the
response function in Eq. (4) and for the correlation function
according to Eqs. (10) and (11) results in

fABðtÞ ¼ −
2

ℏ
tan

�
βℏ
2

d
dt

�
SABðtÞ; ð12Þ

which is the fluctuation-dissipation theorem expressed in
the time domain since it relates the response function
fABðtÞ with the cross-correlation function SABðtÞ.
Numerical aspects of possible implementations.—

Equation (4) shows that the response function is, apart
from its initial value fABð0Þ, solely determined by the
simultaneous displacements that are expressed by ΔÂðtÞ
and ΔB̂ðtÞ and not by the operators ÂðtÞ and B̂ðtÞ
themselves. This form has two advantages: it can be
exploited efficiently in numerical approaches and it avoids
possibly ill-defined quantities such as diverging expect-
ation values. An important example for the latter is the
dipole operator in periodic systems [35]. In Fig. 1 we
illustrate this aspect by analogy to geometric vectors and
represent the action of the operators ÂðtÞ, Âð0Þ, and ΔÂðtÞ
on an arbitrary state jψi in the Hilbert space as such vectors
(with their norms NÂðtÞ ¼ kÂðtÞjψik, etc.). Instead of

dealing with the “large vectors,” i.e., large numbers for
NÂðtÞ and NÂð0Þ, it is sufficient to use the “small vector
displacements” (with small norm NΔÂðtÞ) and avoid the
calculation of quantities that are potentially extremely large
(or infinite), which is always unpractical in the quantitative
analysis of any macroscopic system. More precisely, we see
that the DAF and the DCF are numerically well condi-
tioned, because they evolve as Oðt2Þ at the starting point
t ¼ 0, in contrast to correlation functions that involve ÂðtÞ
directly. Thus, we conclude that the evolution of the
response function fABðtÞ away from its reference fABð0Þ
can be expressed by only the simultaneous displacement
operators of the observables A and B, suggesting an
accurate iterative time-propagation approach.
Another aspect is of equal importance because Eq. (4)

or Eq. (8) allows for a simultaneous simulation of both
diagonal and off-diagonal tensor components for arbitrary
linear responses. This time-domain approach represents
a generalization over present charge-transport approaches
[20]. In particular for the electrical conductivity, the time-
domain approach derived in this Letter complements the
Kubo-Bastin formula in the energy domain, which has been
successfully used to study electron transport in topological
systems and twisted bilayer graphene [28,36].
At the same time, the simulation of diagonal and off-

diagonal matrix elements on equal footing in the same
algorithm allows minimizing discrepancies due to
different numerical approaches. This is particularly relevant
when combining matrix elements such as for the calcu-
lation of the resistivity from diagonal and off-diagonal
conductivities.
Series expansion of the displacement functions.—We

now provide some useful relations involving the displace-
ment functions Dþ

ABðtÞ and D−
ABðtÞ that let us find the

coefficients of their Taylor series expansion around t ¼ 0.
First, we find an important equivalence between the
displacement functions Dþ

ABðtÞ, D−
ABðtÞ, Dþ

_A _B
ðtÞ, and

D−
_A _B
ðtÞ, namely,

d2

dt2
Dþ

ABðtÞ ¼ 4S _A _Bð0Þ −Dþ
_A _B
ðtÞ; ð13Þ

d2

dt2
D−

ABðtÞ ¼ −2ℏf _A _Bð0Þ −D−
_A _B
ðtÞ: ð14Þ

Since Dþ
ABðtÞ and D−

ABðtÞ are both time symmetric, their
Taylor series expansion contains only even powers of t.
As a consequence, Eqs. (13) and (14) provide a recurrence
relation for their expansion coefficients. Because Dþ

ABðtÞ,
D−

ABðtÞ and also all higher order displacement functions,
e.g., Dþ

Ä B̈
ðtÞ and D−

Ä B̈
ðtÞ vanish at t ¼ 0, we have

d2k

dt2k
Dþ

ABðtÞjt¼0 ¼ 4ð−1Þk−1SAðkÞBðkÞ ð0Þ; ð15Þ

FIG. 1. Geometric interpretation of the time evolution of the
change of the response function fABðtÞ − fABð0Þ. Only the small
displacement vectors after operator action with ΔÂðtÞ [and ΔB̂ðtÞ
equivalently] need to be calculated instead of the large vectors
related to the operators ÂðtÞ or Âð0Þ.
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d2k

dt2k
D−

ABðtÞjt¼0 ¼ 2ℏð−1ÞkfAðkÞBðkÞ ð0Þ; ð16Þ

where AðkÞ denotes the k-fold nested commutator of Ĥ0

with Â, i.e., AðkÞ ¼ ði=ℏÞk½Ĥ0; Â�k. Thus, the series expan-
sion of the DAF and the DCF can be written as

Dþ
ABðtÞ ¼ 4

X∞
k¼1

ð−1Þk−1t2k
ð2kÞ! SAðkÞBðkÞ ð0Þ

¼ −4
X∞
k¼1

t2k

ð2kÞ!SABð2kÞ ð0Þ; ð17Þ

D−
ABðtÞ ¼ 2ℏ

X∞
k¼1

ð−1Þkt2k
ð2kÞ! fAðkÞBðkÞ ð0Þ

¼ 2ℏ
X∞
k¼1

t2k

ð2kÞ! fABð2kÞ ð0Þ: ð18Þ

We show two versions for each of these intriguing
expansions to highlight that different coefficients can be

used to expressDþð−Þ
AB ðtÞ. They can be calculated using both

the k-fold nested commutators of Â with Ĥ0 and B̂ with Ĥ0

or, alternatively, only the 2k-fold nested commutators of B̂
with Ĥ0 (or 2k-fold nested commutators of Â with Ĥ0).
This great flexibility allows us to choose the easiest way of
calculation of such commutators.
Analytical example: Magnetic resonance of an isolated

electron spin.—As a minimal-model illustration of
Theorem 1 that demonstrates how the displacement func-
tions Dþ

ABðtÞ and D−
ABðtÞ determine the linear response, we

use the spin precession under a perturbative magnetic field.
The unperturbed system Hamiltonian of a single electron
spin with mass me in the presence of a large magnetic field
Bz is described by Ĥ0 ¼ σ̂zμBBz with the Bohr magneton
μB ¼ ℏe=2me. Here no spin-relaxation processes due to
spin-spin interaction or spin-orbit interaction are consid-
ered. The system is perturbed by an adiabatically switched
oscillating and linearly polarized magnetic field Ĥ0ðtÞ ¼
−σ̂xμBBxFðtÞ with Bx ≪ Bz. Its response in terms of the
macroscopic expectation value of the spin vector S with the
components Sα ¼ Trðρ̂ℏσ̂α=2Þ is monitored.
Within this very simple model, we can analyze analyti-

cally the individual contributions to the response function
fABðtÞ according to Eqs. (17) and (18). With Â ¼ ℏσ̂α=2
and B̂ ¼ σ̂xμBBx we find

fABð0Þ ¼ μBBxTrðρ̂0σ̂zÞδαy; ð19Þ

D−
ABðtÞ ¼ 2ℏμBBxTrðρ̂0σ̂zÞδαy½cos ðωLtÞ − 1�; ð20Þ

Dþ
ABðtÞ ¼ 2ℏμBBx½1 − cos ðωLtÞ�Trðρ̂0σ̂2xÞδαx; ð21Þ

with the Larmor frequency ωL ¼ eBz=me. The application

of the operator tanðβℏ
2

d
dt
Þ on Dþ

ABðtÞ is evaluated analyti-

cally and for a single spin we can use Trðρ̂0σ̂zÞ ¼
tanh ðβμBBzÞ and Trðρ̂0σ̂2xÞ ¼ 1. If the perturbation field
oscillates with Fðt0 − tÞ ¼ limη→0þ e−iωt−ηt then the sus-
ceptibility tensor χαβðωÞ ¼ 2μBμ0SαðωÞ=BβVℏ has the
components

χxxðωÞ ¼
μ2Bμ0
ℏV

tanh ðβμBBzÞ
2ωL

ω2 − ω2
L
; ð22Þ

χyxðωÞ ¼ −
μ2Bμ0
ℏV

tanh ðβμBBzÞ
2iω

ω2 − ω2
L
; ð23Þ

in full consistence with the textbook expression for the
paramagnetic susceptibility in the theory of magnetic res-
onance (MR) [37]. This shows that MR is correctly
described with the analytical displacement functions, while
the numerical evaluation allows us to describe much more
complex situations of the magnetic resonance and a broader
class of spin-related phenomena in the new approach.
Indeed, if the system Hamiltonian Ĥ0 becomes more
complex (e.g., with additional spin-orbit interaction, i.e.,
Ĥ0 → Ĥ0 þ γL̂ · Ŝ, or spin-spin interactions such as in the
Heisenberg model for ferro- or anti-ferromagnetic materials,
i.e., Ĥ0 → Ĥ0 þ γ

P
hi;ji Ŝi · Ŝj) the displacement functions

Dþ
ABðtÞ and D−

ABðtÞ can rarely be expanded analytically but
Eq. (4) can be evaluated efficiently by time evolution
approaches [19,20]. In this work we showcase another
application field, the charge carrier transport.
Numerical example: Electrical conductivity tensor of the

Haldane model.—In this application, which is of foremost
interest to us, the operators Â and B̂ are identified with the
electric dipole moments along different Cartesian direc-
tions ex̂α, while the modulation function is taken to be
constant Fðt0 − tÞ ¼ Fð0Þ and proportional to the electric
field strength Eβ. Then the linear response of the current

density Trðρ̂ðtÞ|̂αÞ ¼ σdcαβEβ with |̂α ¼ e _̂xα=V is described
by the dc-conductivity tensor

σdcαβ ¼
e2

V
lim
t→∞

�
β

4

tan ðβℏ
2

d
dtÞ

ðβℏ
2

d
dtÞ

d
dt

Dþ
xαxβðtÞ þ

1

2ℏ
D−

xαxβðtÞ
�
:

ð24Þ

We consider the classic Haldane model for honeycomb
lattices [38] as a fundamental example of a topological
Chern-insulator to demonstrate the theoretical and numeri-
cal description. Its Hamiltonian is defined on the graphene
lattice as
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Ĥ0 ¼ −t1
X
hi;ji

ĉ†i ĉj þ t2
X
⟪i;j⟫

eiϕij ĉ†i ĉj

þ ΔAB

2

X
i

ðδiA − δiBÞĉ†i ĉi þ
X
i

Viĉ
†
i ĉi; ð25Þ

with the nearest-neighbor coupling t1 and the next-nearest-
neighbor coupling t2. The electronic on site energies can be
modified by an energy splitting ΔAB that breaks the AB-
sublattice symmetry, which, however, is taken ΔAB ¼ 0 for
simplicity here. Additionally, a uniform Anderson disorder
potential with −V=2 ≤ Vi ≤ V=2 is applied. The next-
nearest-neighbor coupling t2 opens an energy gap ΔT at the
Dirac point. This topological gap opens because time-
reversal symmetry is broken leading to an anomalous
quantum Hall effect. If the unimodular phase is set to
jϕijj ¼ π=2 such that the total net flux inside a hexagon

vanishes, the topological gap has a width of ΔT ¼ 6
ffiffiffi
3

p
t2.

In Figs. 2(a) and 2(b), we show the numerical results for the
energy-resolved resistivities ρxy and ρxx for different values
of ΔT , which are obtained from the time-resolved conduc-
tivity tensor in Eq. (24) taken at t ¼ 20π=t1. The results
inside the topological gap confirm the Hall conductivity
σxy ¼ e2=h and the Hall resistivity ρxy ¼ h=e2 in full
consistency with the disorder-free case [38] and other
implementations of the Kubo formula [28] based on the
Kubo-Bastin formula for the electrical conductivity [2].
In addition to the energy dependence of electron trans-

port, we are here able to determine the time-resolved
dynamics of the conductivity and the resistivity,

exemplarily shown in Figs. 2(c) and 2(d). For example,
the Hall plateau in σxy and ρxy emerges at early times and,
for the large topological gap of ΔT ¼ t1, converges after
10 periods of τT ¼ 2π=ΔT with a root-mean-square
deviation of 0.5% relative to the analytical value [blue
line in Figs. 2(c) and 2(d)]. This formation time would
correspond to around 15 fs (if we take t1 ¼ 2.7 eV as a
typical value for graphene). For the small gap of
ΔT ¼ 0.1t1, the formation process is tenfold slower and
shows a stronger oscillatory behavior at early times [see red
curve in Figs. 2(c) and 2(d)]. Still in both cases of
significant Anderson disorder (V ¼ 0.1t1), we conclude
that the formation process of the topological state is stable
against disorder-induced scattering. Slight differences in
the convergence behavior to a plateau value are observed
between the gap center and the gap edges when the strength
of the Anderson disorder is comparable to the system’s
topological gap [see Fig. 2(b)].
We further emphasize that the transverse response is

obtained at a very small fraction of the conventional
simulation time because only Dþ

xαxβðtÞ and D−
xαxβðtÞ need

to be propagated numerically. As compared to other linear-
scaling time-domain approaches [27,39] that require a
propagation of around 1000–5000 Lanczos vectors, the
new time-domain approach demands the propagation of
only 2–4 Lanczos vectors, which hence results in a speed-
up and savings in computational time by 3 orders of
magnitude.
Finally, the correspondence of the new formalism based

on the expressions (4) and (8) to known forms of the Kubo
formula for the electrical conductivity [1,40] is compiled in
the Appendix [32] for the interested reader. There, we also
discuss further limiting cases, namely, the high-temperature
and the classical limit of Eqs. (4) and (8).
Conclusions.—In this work, we have derived analytic

forms of linear response functions by decomposition
into time-symmetric and time-antisymmetric contributions.
This enables an efficient implementation and computation
of transverse linear response phenomena at the same
footing as the longitudinal response. Different limiting
cases that are known have been reproduced. This unified
description makes the development of specific algorithms
unnecessary and at the same time allows us to study these
responses in the time domain. As compared to other linear-
scaling time-domain approaches to transverse responses,
it benefits from a speed-up factor of 1000 or more. This
allows the precise determination of topological effects in a
time-domain approach that has not been established before.

We would like to thank the Deutsche Forschungsge-
meinschaft for financial support (Projects No. OR 349/1
and OR 349/3). Grants for computer time from the Zentrum
für Informationsdienste und Hochleistungsrechnen of TU
Dresden (ZIH) and the Leibniz Supercomputing Centre in
Garching (SuperMUC-NG) are gratefully acknowledged.

FIG. 2. (a) Longitudinal and transversal resistivity components
of the Haldane model for graphene calculated from the displace-
ment form of the Kubo conductivity. The model parameters are
set to ΔT ¼ t1, ΔAB ¼ 0 and V ¼ 0.1t1. (b) Same as in (a) but
with reduced topological gap ΔT ¼ 0.1t1. (c) and (d): Time-
resolved Hall conductivity (c) and Hall resistivity (d) at the Dirac
point (E ¼ 0) for both topological gap sizes.
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