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Two-dimensional crystalline membranes in isotropic embedding space exhibit a flat phase with
anomalous elasticity, relevant, e.g., for graphene. Here we study their thermal fluctuations in the absence
of exact rotational invariance in the embedding space. An example is provided by a membrane in an
orientational field, tuned to a critical buckling point by application of in-plane stresses. Through a detailed
analysis, we show that the transition is in a new universality class. The self-consistent screening method
predicts a second-order transition, with modified anomalous elasticity exponents at criticality, while the RG
suggests a weakly first-order transition.
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Introduction.—Experimental realization of freely sus-
pended graphene [1,2] and other exfoliated crystals
launched a renaissance in the statistical mechanics of
elastic membranes [3–13] and their electronic properties
[14,15]. Theoretical interest is also motivated by the
opportunity to explore rich interplay between field theory
and geometry [10].
A striking prediction is the existence of a low-

temperature stable “flat” phase of a tensionless crystalline
membrane [3] that spontaneously breaks rotational sym-
metry of the embedding space. This is in stark contrast to
canonical two-dimensional field theories where the
Hohenberg-Mermin-Wagner theorems [16–18] preclude
the spontaneous breaking of a continuous symmetry.
In such elastic membranes, in a spectacular phenomenon

of order from disorder, thermal fluctuations instead stiffen
the long-wavelength (k−1) bending rigidity κ0 → κ0k−η,
η > 0, via a universal power-law “corrugation” effect,
with membrane roughness scaling as hrms ∼ Lζ, with
ζ ¼ ð4 −D − ηÞ=2 [3,10], where D is membrane’s internal
dimension, with D ¼ 2 for the physical case. The resulting
anomalous elasticity is characterized by universal expo-
nents, η, ζ, and ηu ¼ 4 −D − 2η is determined exactly by
the underlying rotational invariance, with a scale dependent
Young modulus K0 → K0qηu . This was predicted, together
with the values of the exponents, by a variety of methods
[3,4,6,7,13], verified in simulations [19] and continues to
be explored experimentally [20].
Most theoretical studies to date have focused on stress-

free fluctuating membranes in an isotropic embedding
environment [3,4,6–8,12,13,21–25], as appropriate for,
e.g., soft matter realizations in an isotropic fluid (but see
spherical shells [26,27]). However, many experiments on
solid-state membranes may be subjected to embedding
space anisotropy and/or external stresses due to substrate

[28–30], clamping [31–33], electric and magnetic fields
[34,35], or by a nematic solvent [36–39]. In all previous
theoretical descriptions, the rotational invariance in the
embedding space was assumed and the response to boun-
dary stress σ found to be controlled by the thermal tension-
less membrane fixed point [4]. The case of weak field or
stresses was treated as a cutoff for the isotropic critical
fluctuations, beyond a large scale ξ ∼ ðκ=σÞν, that diverges
with a vanishing σ, where ν is a universal exponent that
we compute below. Such perturbations lead to an anomalous
response, which in the context of tension predicts a
non-Hookean stress-strain relation ε ∼ σα, with α ¼
ðD−2þηÞ=ð2−ηÞ¼D¼2η=ð2−ηÞ [5,6,12,13,24,40–42].
In this Letter we study geometries (Fig. 1), where the

imposed stress and anisotropy lead to richer and universal
buckling phenomenology. Generic buckling is a complex
out-of-plane instability of a sheet subjected to compression,
which results in a strongly distorted, nonperturbative state.
Recent studies of isotropic buckling focused on effects of
thermal fluctuations on Euler buckling, stabilized only by

FIG. 1. A critical membrane tuned to a buckling transition by
external in-plane isotropic stress σij ¼ 1

2
σδij, stabilized by an

external field E⃗, that aligns the normal.
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finite size effects [32]. Instead, here we focus on a
continuous anisotropic buckling, where the instability is
controlled by a stabilizing external field. Specifically, we
consider an externally oriented membrane tuned to a
buckling transition by a compressional boundary stress
applied within the plane explicitly selected by the orienta-
tional field [43]. The compressive stress can be tuned to a
critical value, σc to cancel out at quadratic order the
(embedding-space) rotational symmetry breaking fields.
Our key observation is that, at this new buckling critical
point (to which the isotropic flat membrane critical point
[4] is unstable), although at harmonic order the membrane
appears to be rotationally invariant and stress free, thus
exhibiting strong thermal fluctuations, it admits new
important elastic nonlinearities that are not rotationally
invariant [44]. These lead to a critical membrane, tuned to
the buckling point, that is qualitatively distinct from the
conventional tensionless membrane [45].
Results.—Subjecting a crystalline membrane to a lateral

compressive isotropic boundary stress σ, tuned to a critical
tensionless buckling point σc and stabilized by an orienting
field, we find a new buckling universality class, distinct
from the isotropic tensionless membrane [3,4,6,7,13]. We
use two complementary approaches to analyze the proper-
ties of the resulting critical state. The first is the self-
consistent screening approximation (SCSA), which was
found to provide an accurate description for the isotropic
case [7,13]. Thermal fluctuations and elastic nonlinearities
at the buckling transition lead to a universal anomalous
elasticity with exponent

ηanis ¼ 0.754; ð1Þ

characterizing the divergence of the effective length-scale
dependent bending rigidity κðkÞ ∼ k−η. The in-plane elastic
moduli remain finite at the critical point, i.e., ηanisu ¼ 0 [47].
This is despite the fact that the five eigencouplings
wiðqÞ ∼ q4−D−2η renormalize nontrivially, vanishing in
the long wavelength limit. This is distinct from the
tensionless isotropic membrane for which SCSA predicts
universal exponents η ≈ 0.821, ηu ≈ 0.358 [7]. The corre-
sponding roughness hrms ∼ Lζ of the critically buckled
membrane is characterized by a universal roughness
exponent

ζanis ¼ 0.623; ð2Þ

and it is thus rougher than a tensionless isotropic mem-
brane, with a roughness exponent ζ ≈ 0.59 [7].
We complement this SCSA calculation by an RG

analysis in an expansion in ϵ ¼ 4 −D. It confirms the
instability of the standard anomalous elasticity fixed point
of the isotropic, tensionless membrane, under breaking of
the embedding space rotational symmetry. As for the
isotropic membrane, the elastic nonlinearities destab-

ilize the harmonic theory beyond the length scale
ξisoNL ∼ ðκ2=TK0Þ1=ð4−DÞ. If the anisotropy perturbation is
very weak, e.g., w ∼ μ1;2, λ1;2 ≪ K0, the membrane still
experiences the standard isotropic anomalous elasticity up
to scales ξisoNL, crossing over to the new anisotropic critical
behavior beyond the crossover length

ξanisNL ¼ ξisoNL

�
K0

w

�
1=ρ

; ρ¼ ϵdc
dcþ24

þOðϵ2Þ; ð3Þ

where ρ is the crossover exponent obtained from lineari-
zation of the RG flow around the isotropic fixed point. If
the anisotropy perturbation is stronger, the thermal fluctu-
ations and elastic nonlinearities directly destabilize the
harmonic theory at scales of order ξisoNL. Beyond these
scales, the RG flows to a new stable buckling critical point,
which, within the ϵ expansion, is however accessible only
for space codimension dc ¼ d −D > 219, analogous to the
crumpling transition found by Paczuski et al. [48]. For the
physical case, dc ¼ 1, we interpret the resulting runaway
flows as a weakly first-order transition. The SCSA is exact
for large dc, and the two methods match in their common
regime of validity.
Model of anisotropic membrane buckling.—The coor-

dinates of the atoms in the d-dimensional embedding space
are denoted r⃗ðxÞ ∈ Rd, with the atoms labeled by their
position x ∈ RD in the internal space. For grapheneD ¼ 2,
and atoms span a triangular lattice, described here in the
continuum limit. The deformations with respect to the
flat sheet are described by D phonon fields uαðxÞ, and
dc ¼ d −D height fields h⃗ ∈ Rdc (orthogonal to the e⃗α) as
r⃗ðxÞ ¼ ½xα þ uαðxÞ�e⃗α þ h⃗ðxÞ, where the e⃗α are a set of D
orthonormal vectors. While the physical case corresponds
to d ¼ 3 and dc ¼ 1, it is useful to study the theory for a
general dc. The nonlinear strain tensor measures the
deformation of the induced metric relative to the preferred
flat metric, uαβ ¼ 1

2
ð∂αr⃗ · ∂βr⃗ − δαβÞ ≃ 1

2
ð∂αuβ þ ∂βuα þ

∂αh⃗ · ∂βh⃗Þ to the accuracy needed here, with the
O½ð∂uÞ2� phonon nonlinearities irrelevant and therefore
neglected. The tensor uαβ encodes full rotational invariance
in the embedding space, its approximate form being
invariant under infinitesimal rotations by θ, i.e., the
Oðθ2Þ term vanishes under the (apparent) distortion
u1 ¼ x1ðcos θ − 1Þ, h1 ¼ x1 sin θ of a rigid rotation, with
a vanishing of the exact strain tensor.
Here we build on the model of a rotationally invariant

tensionless membrane. Its Hamiltonian is the sum of
curvature energy and in-plane stretching energy

F 1½h⃗;uα�¼
Z

dDx

�
κ

2
ð∂2h⃗Þ2þτuααþμðuαβÞ2þ

λ

2
ðuααÞ2

�

ð4Þ
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where κ is the bending modulus, λ, μ the in-plane Lamé
elastic constants. The parameter τ controls the preferred
extension of the membrane in the e⃗α plane.
Based on symmetry considerations, complemented by a

model-building derivation below, external orientational and
boundary stresses introduce new relevant elastic nonlinear-
ities, with five independent couplings, that by symmetry
lead to a modified effective Hamiltonian F ¼ F 1 þ F 2,
where F 2 breaks rotational invariance in the embedding
space,

F 2½h⃗; uα� ¼
Z

dDx
�
γ

2
ð∂αh⃗Þ2 þ

λ1
2
∂αuαð∂βh⃗Þ2

þ λ2
8
½ð∂αh⃗Þ2�2 þ μ1∂αuβð∂αh⃗ · ∂βh⃗Þ

þ μ2
4
½∂αh⃗ · ∂βh⃗�2

�
; ð5Þ

retaining in-plane isotropy and the h → −h invariance as a
feature of our geometry, preserving the equivalence
between the two sides of the membrane.
We now study the membrane with parameters tuned to

the thermal buckling critical point defined by the renor-
malized γR ¼ 0. Integrating over the in-plane phonon
modes uα and, rescaling for convenience all elastic con-
stants by 1=dc, we obtain an effective Hamiltonian for the
height field,

F ½h⃗� ¼
Z

dDx

�
κ

2
ð∂2h⃗Þ2 þ γ

2
ð∂αh⃗Þ2

�

þ 1

4dc

Z
dDxdDy

× ∂αh⃗ðxÞ · ∂βh⃗ðxÞRαβ;γδðx − yÞ∂γh⃗ðyÞ · ∂δh⃗ðyÞ;
ð6Þ

with a nonlocal quartic tensorial interaction, which
in Fourier space is given by [49] Rαβ;γδðqÞ ¼P

5
i¼1 wiðWiÞαβ;γδðqÞ. The Wi are five projectors in the

space of four index tensors, equal to bilinear combinations
of PL

αβðqÞ ¼ qαqβ=q2 and PTðqÞ ¼ δαβ − PL
αβðqÞ projec-

tors. The five “bare couplings” wi are given in the
Supplemental Material [53] in terms of the bare elastic
moduli in (4) and (5), together with the basis tensors
Wi [54]. The important features are the following.
When rotational symmetry breaking is absent, γ ¼ 0,
μ1 ¼ μ2 ¼ λ1 ¼ λ2 ¼ 0, the couplings w2, w4, w5

vanish and w1 ¼ μ, w3 ¼ μþ ðD − 1Þ½μλ=ðλþ 2μÞ�,
leading to

Rαβ;γδðqÞ ¼ ðw3 − w1ÞPT
αβP

T
γδ þ w1

1

2
ðPT

αγPT
βδ þ PT

αδP
T
βγÞ;
ð7Þ

which is the usual quartic coupling associated to F 1. When
λ1 and λ2 are turned on, while μ1 ¼ μ2 ¼ 0, all wi are
nonzero except w2 ¼ 0. Finally, when all couplings in F 2

are nonzero, all wi are nonzero.
SCSA analysis.—The form (6) is suitable to apply the

SCSA method, which is exact in the limit of large dc, as
detailed in the Supplemental Material [53] and parallels
Sec. IVA of [13]. Consider the two point correlation
of the height field in Fourier space, hhiðkÞhjðk0Þi ¼
GðkÞð2πÞdδdðkþ k0Þδij. If we neglect the quartic non-
linearities in (6) we find GðkÞ ¼ GðkÞ ¼ 1=ðγk2 þ κk4Þ.
The nonlinearities lead to a nonzero self-energy
ΣðkÞ ¼ GðkÞ−1 − γk2 − κk4. Together with the renormal-
ized interaction tensor, R̃ðqÞ, it satisfies the SCSA equation

ΣðkÞ ¼ 2

dc

Z
q
kαðkβ − qβÞðkγ − qγÞkδR̃αβ;γδðqÞGðk − qÞ

together with R̃ðqÞ ¼ RðqÞ − RðqÞΠðqÞR̃ðqÞ where ΠðqÞ
encodes the screening of the in-plane elasticity by out-of-
plane fluctuations

Παβ;γδðqÞ ¼
1

4

Z
p
vαβðq;q − pÞvγδðq;q − pÞGðpÞGðq − pÞ

and vαβðp;p0Þ ¼ pαp0
β þ p0

αpβ. One can decompose

ΠðqÞ ¼ P
5
i¼1 πiðqÞWiðqÞ and R̃ðqÞ ¼ P

5
i¼1 w̃iðqÞWiðqÞ,

with w̃iðqÞ the momentum dependent renormalized cou-
plings. Looking for a small-k solution, GðkÞ ≃ Z−1

κ =k4−η,
and evaluating the integrals πiðqÞ [53] one finds that they
diverge at small q as πiðqÞ ≃ Z−2

κ aiðη; DÞq−ð4−D−2ηÞ. We
find that the renormalized couplings are softened at small q
as w̃iðqÞ ∝ Z2

κciðη; DÞqηu , with ηu ¼ 4 −D − 2η [53].
When all bare couplings wi are nonzero, and for a physical
membrane, D ¼ 2, it reduces to a cubic equation dc ¼
½24ðη − 1Þ2ð2ηþ 1Þ�=½ðη − 4Þηð2η − 3Þ� [53]. For dc ¼ 1
we obtain our main result (1). For large dc we
find η ¼ 2=dc þOð1=d2cÞ. The roughness of a size L
membrane is characterized by hrms ¼ hh2i1=2 ≃ Lζ where
ζ ¼ ð4 −D − ηÞ=2. Hence for dc ¼ 1 we find ζ ¼ 0.623.
One can define renormalized amplitude ratio as

limq→0f½w̃iðqÞ�=½w̃jðqÞ�g ¼ ci=cj for any pair ði; jÞ such
that the bare couplings wi, wj are nonzero. Near D ¼ 4 we
find that these renormalized couplings take values such
that the interaction energy becomes v1=2½ð∂αh⃗Þ2�2þ
v2ð∂αh⃗ · ∂βh⃗Þ2, i.e., local in the fields ∂αh⃗. This property
however does not hold for D < 4, e.g., one finds c2=c1 ¼
ðDþ η − 2Þ=ð2 − ηÞ instead of unity for D ¼ 4, η ¼ 0.
Thus the critical point requires a fully nonlocal five-
coupling description. In the physical case of D ¼ 2 and
dc ¼ 1 we find ci ¼ f1

2
; 0.302; 0.338;−0.029; 0.173g, and

the universal λ=μ ¼ −0.978 and the Poisson ratio (not to be
confused with the stress field),
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σanis ¼ −0.968; ð8Þ

to be contrasted with σ ¼ −1=3 for an isotropic tensionless
membrane [7,13].
There are other fixed points that lie in the invariant

subspaces of the SCSA equations. The anomalous flat
phase of the isotropic membrane corresponds to bare
couplings w2 ¼ w4 ¼ w5 ¼ 0, leading for D ¼ 2 to
η ¼ 4=ðdc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 2dc þ d2c

p
Þ, and η ≃ 0.821, ζ ¼ 0.590,

for dc ¼ 1 [7,13]. Near D ¼ 4 one recovers η ¼ ½12=ðdc þ
24Þ�ϵþOðϵ2Þ from the ϵ expansion [4]. Another fixed
manifold is w2 ¼ 0, i.e., ðμþ μ1Þ2 ¼ μðμþ μ2Þ, which
includes the choice μ1 ¼ μ2 ¼ 0, leading to w̃2ðqÞ ¼ 0
and to yet another fixed point with c2 ¼ 0. For D ¼ 2 and
dc ¼ 1 we find η ¼ 0.854 and ζ ¼ 0.573. Near D ¼ 4 we
find η ¼ ½18=ðdc þ 36Þ�ϵþOðϵ2Þ.
RG analysis.—We complement SCSA with ϵ ¼ 4 −D

RG expansion with five dimensionless couplings ŵi ¼
wi=κ2C4Λ−ϵ

l governed by ∂lŵi ¼ ϵŵi þ aijkŵjŵk [53].
The anomalous dimension of the out-of-plane height field
h defines the exponent η given by η ¼ 1

12
ð10ŵ1 − 18ŵ2þ

5ŵ3 þ 3ŵ5 − 6ŵ44Þ with ŵ44 ¼
ffiffiffi
3

p
ŵ4, and evaluated at the

fixed point of interest ŵ�
i . The anomalous dimension of the

phonon field is given by ηu ¼ 1
12
ðŵ1 − ŵ2Þ. The isotropic

membrane corresponds to the space ŵ2 ¼ ŵ4 ¼ ŵ5 ¼ 0,
which is preserved by the RG flow and along
which ∂lŵ1 ¼ − 1

12
ŵ1½ðdþ 20Þŵ1 þ 10ŵ3� and ∂lŵ3 ¼

− 5
24
ŵ3½ðdþ 4Þŵ3 þ 8ŵ1�. The isotropic membrane fixed

point is ŵ�
1 ¼ 12ϵ=ðdþ 24Þ, ŵ�

3 ¼ ½24ϵ=5ðdþ 24Þ�, cor-
responding to μ̂� ¼ ½12ϵ=ð24þ dÞ�, λ̂� ¼ ½−4ϵ=ð24þ dÞ�
[4]. Diagonalizing the RG flow for ŵi ¼ ŵ�

i þ δŵi around
this fixed point in the larger space of five couplings shows
that, in addition to the two negative eigenvalues −1 and
−dc=ðdc þ 24Þ within the plane δŵ1;3 of the isotropic
membrane, (i) there is a marginal direction mixing
δŵ1;3;4 (eigenvalue 0), (ii) there are two unstable directions
with eigenvalues dc=ðdc þ 24Þ with δw2;5 nonzero (in the
large dc limit this eigenspace is purely along δw2;5). Hence,
consistent with the SCSA, the isotropic membrane fixed
point is unstable to anisotropy of the orientational field and
external boundary stress.
We found attractive fixed points of the RG equations in

the subspace of couplings ŵi at which the interaction
energy is fully local in the gradients ∂αh⃗ and parametrized
by two couplings v1, v2 as defined above. This subspace is
preserved by the RG and also arises in the study of the
crumpling transition. In fact the RG flow within this
subspace is identical to the one obtained in [48] with d
replaced by dc. It admits a stable FP for dc > 219, that is
fully attractive in the space of the five couplings. Hence the
RG approach is consistent, around D ¼ 4, with the SCSA
exact for large dc and any D, predicting a new fixed point
for membrane in anisotropic embedding space. For the

physical membrane D ¼ 2 and dc ¼ 1, while the SCSA
predicts this new “anisotropic buckling transition” to be
continuous, the RG, if extrapolated from D ¼ 4, suggests a
weak first-order transition, as argued for the crumpling
transition [22,23,48].
To reach the new anisotropic buckling critical point

requires tuning γ ¼ γc, so that γR ¼ 0. Slightly away from
criticality the correlation length is long but finite,
ξ ∼ jδγj−ν, diverging with a vanishing δγ ¼ γ − γc.
Linearizing the RG flow around the fixed point yields
δγðLÞ ∼ δγLθ, where θ ¼ −ϵ=dc½1 − ð66=dcÞ þOð1=d2cÞ�
[53]. By balancing κðξÞξ−4 ∼ δγðξÞξ−2 and using that
κðξÞ ∼ ξη we obtain the correlation length expo-
nent, ν ¼ 1=ð2þ θ − ηÞ.
Model development.—To develop a beyond-symmetry

model (4), (5) of a critically buckled membrane we consider
an elastic membrane in an external field E⃗ ¼ Eẑ that
aligns the membrane’s normal n̂ along the field (Fig. 1).
We thus expect the energy-density to be a monotonic
function of n̂ · E⃗, namely of the small tilt angle θ
of the membrane’s normal away from the preferred z axis,
Horient ¼ ðα1=2Þθ2 þ ðα̃2=4Þθ4 þ � � �, with α1 > 0, α̃2 > 0.
Combining this orientational field energy with the
Hamiltonian for an elastic membrane [10,13], subjected
to an in-plane compressional boundary stress σ > 0,
isotropic in the membrane’s xy plane, and, using that, to
lowest order θ ∼ j∂αhj, we obtain,

H ¼ κ

2
ð∂2hÞ þ μu2αβ þ

λ

2
u2αα þ σ∂αuα

þ α1
2
ð∂αhÞ2 þ

α2
4
ð∂αhÞ4 þ � � � : ð9Þ

We note that the external stress σ is an in-plane boundary
term, which induces a stress-dependent inward displace-
ment of the membrane’s edges. Observing that
σ∂αuα ¼ σuαα − 1

2
σð∂αhÞ2, the rotationally invariant strain

component σuαα can be accommodated by simply changing
the preferred extension of the membrane without breaking
the embedding space rotational symmetry [i.e., a redefini-
tion of the parameter τ in (4), which determines the
preferred membrane’s projected area [55] ]. The negative
in-plane strain ∂αuα induced by positive σ can also be
relieved by a membrane tilt, ð∂αhÞ2 > 0, which is stress
free in the actual plane of the membrane. The lowering of
the energy associated with the membrane tilt is then given
by Hσ ¼ − 1

2
σð∂αhÞ2, which, neglecting bending energy

and boundary conditions, is unbounded, since tilt is uncon-
strained in the absence of the orientational field. Putting
these ingredients together and rescaling xy coordinate
system, we obtain the Hamiltonian governing a buckling
transition of a membrane in an orientational field,

H ¼ κ

2
ð∂2hÞ þ μu2αβ þ

λ

2
u2αα þ

γ

2
ð∂αhÞ2 þ

α2
4
ð∂αhÞ4;
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where γ ¼ α1 − σ is the critical parameter which can be
tuned to γc to reach the buckling transition (with γc ¼ 0 at
T ¼ 0), studied here. As detailed in the Supplemental
Material [53], we can estimate the buckling stress σc based
on a model of homeotropic alignment of a membrane in a
nematic solvent [39] and a model of a ferroelectric
membrane aligned by an electric field. These give
σc ∼ 1–10 eV=μm2, with the thermal fluctuation correc-
tions to γ, that we show in the Supplemental Material to be
subdominant.
Conclusion.—In contrast to previous works on tension-

less crystalline membranes, we studied a thermal elastic
sheet tuned by an external boundary stress to a critical point
of a buckling transition, stabilized by an orientational field.
We find that this breaking of embedding rotational sym-
metry leads to a new class of anomalous elasticity, that we
have explored in detail here using the SCSA and RG
analyses. With much recent interest in elastic sheets, most
notably graphene and other van der Waals monolayers, we
hope to stimulate further experiments to probe the rich
universal phenomenology predicted here for an elastic
membrane tuned to a buckling transition in an anisotropic
environment. We expect that ideas explored here can be
extended to richer class of anomalously elastic
media [56,57].
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Note added.—We have recently became aware of an
ongoing work by S. Shankar and D. R. Nelson on a
membrane with a boundary stress, which, in contrast to
our work only breaks embedding rotational symmetry at
the boundary.
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