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Plasticity in Amorphous Solids Is Mediated
by Topological Defects in the Displacement Field
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The microscopic mechanism by which amorphous solids yield plastically under an externally applied
stress or deformation has remained elusive in spite of enormous research activity in recent years. Most
approaches have attempted to identify atomic-scale structural “defects” or spatiotemporal correlations
in the undeformed glass that may trigger plastic instability. In contrast, in this Letter we show that the
topological defects that correlate with plastic instability can be identified, not in the static structure of the
glass, but rather in the nonaffine displacement field under deformation. These dislocation-like topological
defects (DTDs) can be quantitatively characterized in terms of Burgers circuits (and the resulting Burgers
vectors) that are constructed on the microscopic nonaffine displacement field. We demonstrate that
(i) DTDs are the manifestation of incompatibility of deformation in glasses as a result of violation of
Cauchy-Born rules (nonaffinity); (ii) the resulting average Burgers vector displays peaks in correspondence
of major plastic events, including a spectacular nonlocal peak at the yielding transition, which results from
self-organization into shear bands due to the attractive interaction between antiparallel DTDs; and
(iii) application of Schmid’s law to the DTDs leads to prediction of shear bands at 45° for uniaxial

deformations, as widely observed in experiments and simulations.
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Identifying the mechanism of plastic deformation in
amorphous solids, such as glasses, is one of the major
unsolved problems in condensed matter physics. In crys-
tals, plastic flow is mediated by dislocations. These are
topological defects corresponding to one missing crystal-
line plane in the lattice (edge dislocations) or to a lattice
plane shifted by one layer (screw dislocations). While the
mechanism of dislocation-mediated plastic deformation
in crystals was already figured out in seminal work by
Taylor [1], Polanyi [2], and Orowan [3] in 1934, a
comparable mechanistic understanding of plastic deforma-
tion in glasses is still missing.

Numerical simulation studies and earlier theories of
plastic activity in glasses have established the existence
of so-called shear transformation zones (STZs) [4]. These
arise in regions where atomic motions are strongly non-
affine, i.e., with additional (nonaffine) displacements on top
of those (affine) dictated by the macroscopic strain, that are
required from mechanical equilibrium [5,6]. However,
STZs have remained poorly characterized in terms of their
structure and topology, until pioneering work by Procaccia
and co-workers [7] suggested that STZs can be identified
with Eshelby-like quadrupolar events in the displacement
field that self-organize into 45° shear bands to minimize the
elastic energy [7] (see also [8]). Although this mechanism
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of self-organization of quadrupoles can explain observa-
tions of sinusoidal density fluctuations in shear bands of
metallic glasses [9,10], the quadrupoles are not the only
shape of plastic instabilities, and in certain systems are
rarely observed or not observed at all [11,12].

In this Letter, we provide the more general answer to the
problem of identifying the mechanism of plastic instability
in amorphous solids and its topological nature. We start by
showing that the (nonaffine) displacement field of glasses
presents well-defined topological singularities connected
with the breakdown of the compatible deformation con-
dition, which we demonstrate here for the first time for
glasses. These topological structures are similar to dis-
locations (and/or vortices in superfluids), with the impor-
tant difference that dislocations in crystals appear in the
undeformed lattice, whereas here they appear in the
displacement field under deformation. This is linked to
the intrinsic out-of-equilibrium nature of glasses and it is
also a fundamental difference with respect to earlier works
that aimed at describing dislocations in the static structure
of undeformed glass [13-16].

We show that these dislocation-like topological defects
(DTDs) are the carriers of plasticity because they lead to an
average Burgers vector that strongly correlates with plastic
events and displays a strong global peak at the yielding
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point. This yielding peak is highly correlated throughout
the material, as expected for a sample-spanning slip system.
Based on this evidence, a consistent theoretical description
of plasticity in amorphous solids can be formulated, with
predictions in excellent agreement with observations.
The mechanical deformation in a material can be
characterized by the displacement (vector) field u;
[17,18], which defines the deviations of the material points
from their original positions (x;) in the undeformed frame:

X =x; + u;. (1)

The i index here indicates the different spatial directions
i = (x,y,z). The displacement vector can be decomposed
into its affine and nonaffine contributions [19]:

= e+ = A, @

where A¥ is a matrix of constants. Nonzero nonaffine
displacements u* arise in glasses and noncentrosymmetric
crystals in order to preserve mechanical equilibrium in the
affine position dictated by the applied strain field [5,6,20].
In ordered crystals, the strain tensor €;; = J;u;) obeys the
so-called compatibility constraint [21,22]:

VxVxe=0, (3)

which is equivalent to saying that du; is a closed differ-
ential form.

More in general, considering the total displacement field,
one can define a Burgers vector [23] as the line integral of
the vector field du; on a closed loop L,

du;
bi=— ¢ du; = — ¢ “Laxk, 4
, 7{: ]éd (4)

As shown below, the Burgers vector vanishes for affine
displacements and it is finite for nonaffine ones:

A _ NA

bt =0, b #0. (5)

A nonvanishing Burgers vector indicates the presence

of topological defects inside the loop £. In particular, it is

associated to a nontrivial winding number around the line

defect. The presence of a finite Burgers vector is equivalent

with the explicit breaking of an emergent topological

symmetry expressed in terms of the conservation of a

two-form current J;* [24,25]:
207" #0, with Ji* =e"0,u,, (6)
which plays the exact same role of the Bianchi identity in

the classical covariant Maxwell formulation of electromag-
netism (EM) [26,27]. In other words, the presence of

defects and a finite Burgers vector is in 1-to-1 correspon-
dence to the existence of magnetic monopoles in EM [28].

Other typical examples are those of dislocations in
crystals and vortices in superfluids [23,29-32]. The role
of these generalized global symmetries has been recently
recognized to be crucial to classify topological phases of
matter 4 la Landau [33-35]. For more details regarding the
connection between generalized global symmetries and
nonaffine displacements see the related paper [25].

In [25] we showed more formally that the nonaffine
dynamics typical of liquids and amorphous systems nec-
essarily implies the presence of finite Burgers vectors and
topological defects. In this Letter, we take one step forward
and demonstrate these concepts on glass deformation data
taken from numerical simulations of a coarse-grained
(flexible-chain) polymer glass well below the glass tran-
sition used in previous work [36], undergoing athermal
quasistatic (AQS) shear deformation.

In Fig. 1 we show a typical snapshot of the displacement
field at strain y = 0.08, with a system-spanning Burgers
circuit. Several regions with strongly nonaffine configura-
tions exhibiting vortexlike shape are found. At those points,
the displacement field is not single valued and the integral
of the Burgers vector around those region is nonzero.

The displacement field was measured from the MD
simulation and subsequently subjected to an interpolation
procedure to obtain a smooth field for further formal
calculations (for details see the Supplementary Material
[37]). Evaluating the Burgers integral according to Eq. (4)
gives a nonzero Burgers vector b;. As shown in the
Supplemental Material [37], the same calculation on a
purely affine displacement field gives b; = 0. Then in
Eq. (6), this implies that the displacement field is single
valued and 9,,J4" # 0. This also implies the violation of the
compatibility condition [38] already in the small deforma-
tion (elastic) regime of glasses, which was speculated to
occur when the deformation is nonaffine [39], and that we
demonstrate here for the first time for glasses. This finding
also indicates that not only the reference metric space is
curved [16], but also that the affine connections (Christoffel
symbols) are not symmetric in their lower indices and the
Einstein-Cartan torsion tensor is nonzero [40]. Importantly,
while the above facts have been established in crystal
plasticity for large plastic deformations [38], we demon-
strate here microscopically that they apply to glasses even
in the elastic infinitesimal deformation regime, providing a
direct link between geometry and plasticity.

To make the analysis of the data robust, 10 replicas
were created and each was analyzed with stress-strain and
Burgers vector analysis of the DTDs. The results are shown
in Fig. 2. As already anticipated, the norm of the Burgers
vector |b;| averaged over the different replicas displays a
dominant and sharp peak at the location of the yielding
point, around y~0.1. As shown explicitly in the
Supplemental Material [37], (I) the norm of the Burgers
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FIG. 1. Top: a snapshot of the interpolated 2D displacement

field u; for a single replica at y = 0.08. The colors indicate the
amplitude of the displacement field |i|. The red curve is the
closed Burgers loop with R = 10 on which the Burgers vector is
computed using Eq. (4). Bottom: zoom around a strongly
nonaffine region with vortexlike shape.

vector computed on the single replica is able to locate not
only the yielding point but also the secondary plastic events
manifest in the stress-strain curve as sudden stress falloff.
Strikingly, we observe clear peaks of |b;| in correspondence
of these mechanical instabilities signaled by nearly zero
or slightly negative eigenvalues of the Hessian matrix
[41,42]. In addition, (IT) the norm of the Burgers vector
is independent of the topology of the closed Burgers loop.
This is a manifestation of the topological nature of this
object, which “counts” the nonaffine displacements inside
the close loop and demonstrates that these DTDs are
genuine topological invariants.

In Fig. 3 we present a different analysis of the same data,
where now we vary the linear size of the Burgers circuit
used to measure the norm |b;| as a function of strain. This
analysis reveals much of the spatial extent of the various
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FIG. 2. The magnified stress-strain curve (purple circles) and
the norm of the Burgers vector |b;| (orange) averaged over 10
independent replicas. The vertical dashed line indicates the
location of the main peak. The gray shaded area emphasizes
the position of the yielding point.

0.05 0.10 0.15
FIG. 3. Top: the norm of the Burgers vector |b;| as a function of
the closed loop radius R for a single replica. The corresponding
stress-strain curve is in purple. Bottom: the same plot with the
norm of the Burgers vector for R = 10.
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plastic events. It is seen that, on increasing the linear size of
the Burgers circuit £ or its radius R, the peak of b
corresponding to the yield point y = 0.1, grows enor-
mously, much more than the peaks of the plastic events
at y = 0.05-0.06 and y = 0.08, and even more than the
post-yielding peaks at y = 0.15. This fact indicates the
formation of a slip system spanning the whole material
right at yielding, consistent with the formation of shear
bands in Fig. 4. A systematic plot of the Burgers peak
amplitudes as a function of loop radius R for plastic events
at varying y is shown in the Supplemental Material [37].

Based on the above observations, it is possible to
formulate a mechanism of strain softening and plastic
yield in glasses mediated by DTDs and their mutual
interaction. After having verified Eq. (4) on the basis of
the MD simulations, and assuming polar coordinates (z, 9),
the displacement field around a DTD follows immediately
as u; = b;0/2x, with the corresponding local elastic
strain field being singular, €y, = €,9 = b/4nr [43], where
b = |b;| is the modulus of the Burgers vector.

By simple geometry [25], one can show that |b;] o |ul4].
In turn, from theory, numerical simulations, and experi-
ments [19,44-46], it is known that |u}'4| « y, where |u}|
is an average over the sample. This implies that, due to the
nature of nonaffine displacements to grow with y, |b;| has,
on average, a tendency to grow with the applied strain y as
well. This is not exactly what emerges from the single
replica shown in the Supplemental Material [37], where
the behavior of |b;| vs y is rather noisy and intermittent
and occurs mainly through bursts (peaks) in correspon-
dence of major plastic events, and it is these bursts that
grow as y increases. Although a precise mechanism for
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0.00050 0.00075 0.00100 0.00125 0.00150 0.00175
FIG. 4. The evolution of the displacements vector u# by
increasing the external strain y. The background color shows
the Burgers vector norm and the arrow its direction and local
amplitudes. The dashed white lines guide the eye toward the 45°

shear band forming.

DTD multiplication and growth on increasing the strain is
yet to be identified, it becomes statistically more likely that
DTDs begin to interact with each other in the plastic events
where |b;| becomes large. In particular, there is an increased
likelihood that two DTDs come together with antiparallel
Burgers vectors b; and b,. It can be shown, using the
Peach-Kohler force, that this gives rise to an attractive
interaction force given by [18]

Gb,b,
2xr

f= (7)
where b; and b, are the moduli of the Burgers vectors
of the two interacting DTDs and G is the shear modulus.
This force is clearly large around the main plastic events
where |b| is large.

Hence, it is possible to have a mechanism whereby the
rate of encounter and “coagulation” between two DTDs
with antiparallel Burgers vector becomes large. DTDs
therefore attract each other, with an effective attraction
force given by Eq. (7), and tend to coagulate into larger
aggregates in correspondence of plastic events. This shear-
induced aggregation process eventually leads to the for-
mation of slip systems (i.e., shear bands), as the strain
increases.

By leveraging these concepts, it is also possible to
predict the orientation of the slip systems. Let o = F//A,
be the tensile stress acting on the sample, e.g., a uniaxial
stress, with F' the applied tensile force and A, the sample
cross section area. Denoting with ¢ the angle between
the normal to the slip plane and the direction of the tensile
force F, and with A the angle between the slip direction and
the direction of F, the slip plane area is thus given by
A, = A/ cos ¢p. Hence the tensile force resolved in the slip
direction, F cos 4, gives rise to a resolved shear stress given
by the well-known Schmid’s law [47,48]:

Ogss = 0 €COS ¢ cos A. (8)

In general, the three directions are not coplanar; hence
¢+ A #90° while ¢ + 1 = 90° is the minimum possible
value [47,48]. DTDs will, in general, aggregate into slip
bands that are oriented randomly. For a given o, slip
systems will therefore be initiated by facilitated motion
of DTDs that self-organize in a slip plane that experiences
the largest resolved shear stress oggg, Similar to what
happens with avalanches that initiate in a spatial direction
where the resolved stress is largest and thus can overwhelm
frictional resisting forces. The largest resolved stress
clearly corresponds to the maximum value of cos ¢ cos 4.
Under the constraint min(¢ + 4) = 90°, this happens for
¢ = A =45°. Hence, for a uniaxial deformation or for a
simple shear deformation, shear bands due to aggregation
of DTDs will form at an angle of 45° with respect to the
tensile axis as observed in our MD simulations (Fig. 4), as
well as other simulations and experiments [7,9,10].
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In summary, we have shown that nonaffine displace-
ments in the deformation of amorphous materials lead all
the way to the formation of topological singularities
(DTDs) in the displacement field, which can be quantita-
tively characterized by Burgers vectors. We have demon-
strated that DTDs are responsible for plastic events on the
example of athermal quasistatic shear of model polymer
glasses quenched at low temperature. The spatially aver-
aged norm of the Burgers vectors displays peaks corre-
sponding to the plastic events, and an extremely evident
nonlocal (system-spanning) peak at the yield point.
Treating DTDs in analogy to dislocations may allow one
to formulate a self-consistent mechanism of slip band
formation due to the attractive force between antiparallel
DTDs and to their growing population on increasing the
strain. The preferential alignment of coagulated DTDs
(shear bands) along the 45° direction with respect to the
tensile axis is predicted by Schmid’s law, in agreement with
all experiments and numerical simulations. This work
provides the quantitative identification of the long-sought
“defects” that mediate fluidity and plasticity in amorphous
solids [49]. Different from crystals, and from earlier work
on glasses [13], the dislocationlike topological defects are
not to be found in the static structure but, crucially, in the
displacement field under deformation. Furthermore, they
originate directly from nonaffine displacements [5,6,19].
Because the nonaffine displacements in turn originate
from the locally low degree of centrosymmetry in the
static structure of amorphous systems, which is quantifi-
able [50,51], this finding opens up the way for identifying
the structural signatures of plasticity in glasses [52-54], but
now in terms of atomistically well-defined quantities.
Furthermore, it can provide a metric to better distinguish
ductile from brittle first order—like failure [52,55].

Finally, this work provides a quantitative identification
of topological effects in amorphous systems [56], leading
to a new geometrical description of plasticity and defor-
mations in glasses. This has potential to open new
directions in the chase for “order” in disordered systems.
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