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(Received 26 March 2021; revised 1 June 2021; accepted 4 June 2021; published 2 July 2021)

We study experimentally and theoretically the phenomenon of “persistent response” in ultrastrongly
driven membrane resonators. The term persistent response denotes the development of a vibrating state
with nearly constant amplitude over an extreme wide frequency range. We reveal the underlying
mechanism by directly imaging the vibrational state using advanced optical interferometry. We argue
that this state is related to the nonlinear interaction between higher-order flexural modes and higher-order
overtones of the driven mode. Finally, we propose a stability diagram for the different vibrational states that
the membrane can adopt.
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Mechanical resonators have applications as ultrasensitive
sensors of, e.g., molecular transport [1] or as nanomechan-
ical logic gates [2–4]. Nonlinear mechanical properties have
come into focus for signal enhancement [5–7] and noise
reduction in metrology [8,9] for signal processing. In
membrane resonators, different flexural modes can be
excited and have been utilized, e.g., for couplingmechanical
energy to other degrees of freedom such as light and atoms
[10–13]. For micro- and nanomechanical systems in the
nonlinear regime, the Duffing model is widely used to
describe the vibrational behavior [14,15]. The nonlinearity
can be caused by motion-induced tension; i.e., the oscil-
lation of one mode induces an elongation of the resonator
that affects the dynamics also of another mode. Hence, for
large deflection amplitudes, displacement-induced changes
of themechanical propertiesmay give rise to nonlinearmode
coupling [15,16]. Membrane oscillators in the strongly
nonlinear regime offer the possibility to explore nonlinear
mode coupling mechanisms [14,17–22]. Such coupling
leads to exotic line shapes of the response function due to
the transfer of energy betweenmechanicalmodes that can be
faster than the energy relaxation time [20–22].
Here we report a previously undescribed nonlinear

behavior achieved in ultrastrongly driven resonators, which
occurs when we apply a single sinusoidal drive at a
frequency in the range of a flexural mode of a membrane
resonator. For simplicity, we concentrate here on the
fundamental mode [(1,1) mode]; similar observations have
been made for other flexural modes though. Varying the
drive frequency, we observe the development of a plateau in
the response curves that extends over a considerable
frequency range with a nearly constant amplitude; see
Fig. 1(a). We denote the almost constant amplitude over an
extremely wide frequency range as “persistent response.”

We argue that this state is maintained by two different
interaction mechanisms: nonlinear coupling between differ-
ent flexural modes and spatial modulation of overtones [22]
(i.e., the appearance of frequency multiples of one flexural
mode). Here we focus on the first mechanism which
becomes progressively dominant at large detuning. In
the final part, we make a connection with our previous
results recorded in the strong-drive regime [22] to propose a
stability diagram for the vibrational state of the membrane
and to define the strong and ultra-strong-drive regimes.

FIG. 1. Persistent response and higher-order nonlinearities.
(a) Response function generated by different drive voltages
recorded by imaging white light interferometrey showing the
mean amplitude response (normalized to the excitation voltage
and averaged over the whole membrane area) of the (1,1) mode
with eigenfrequency around 321 kHz. (b) Theoretical curves for
the amplitude of the (1,1) mode with different higher-order
nonlinear forces.
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The sample fabrication and measurement principles
have been described in detail elsewhere [22–24]. In
brief, a chip carrying a high-stress silicon nitride
membrane (413.5 μm× 393.5 μm × 478 nm, with residual
stress σ ¼ 0.126 GPa) is glued onto a piezo ring and
installed in a vacuum chamber. From the analysis of the
linear response, we determine a quality factor around
Q ¼ 20 000. Vibrations of the membrane are excited by
applying an ac voltage Vexc sinðωdtÞ to the piezo resulting
in an inertial excitation of the membrane. The vibrational
states of a specific ðm; nÞ mode (the integers m and n
indicating the number of deflection nodes in the x and y
direction) of the membrane are observed by imaging white
light interferometry (IWLI), spatially resolving the deflec-
tion profile and obtaining the averaged mean amplitude
response over the membrane surface area [22,25], and on
the other hand, by Michelson interferometry (MI) focusing
on one particular position of the membrane with a spot
diameter of ∼1 μm. Further experimental details are given
in Sec. I of the Supplemental Material [26], which includes
Refs. [27,28].
We utilize the IWLI signal integrated over the entire

membrane area to record the nonlinear vibration behavior
under ultrastrong excitation and with a driving frequency
ωd around ω11 (ω11=2π ¼ 321 kHz, Q ¼ 20 000). Four
selected traces revealing the pronounced amplitude satu-
ration recorded for different Vexc are plotted over a limited
frequency range in Fig. 1(a). The complete frequency-vs-
drive map is shown in Fig. S3 in the Supplemental Material
[26]. The flattening of the response curve for small
detuning above the linear eigenfrequency (here up to
324 kHz) can be described by the spatial modulation of
localized overtones as explained in Ref. [22]. Here we
concentrate on the frequency range in which the amplitude
is almost independent of the drive frequency highlighted by
the gray area in Fig. 1(a). At large detuning, we observe
features that deviate from the smooth response curve;
see below.
By expanding the complex elastic energy potential of the

membrane in terms of the normal modes, one generates all
possible nonlinear interactions between the different
modes. The generic term reads

VðkhÞ
ðnmjlpÞ ¼ λðkhÞðnmjlpÞq

k
nm qhlp; ð1Þ

with the coupling strength λðkhÞðnmjlpÞ where k, h are integers
and qnm and qlp the amplitudes of the two modes ðn;mÞ
and ðl; pÞ. Except for some frequency ranges where we
observe features that deviate from the smooth curve of the
persistent response, we assume the higher-order modes and
or the overtones are weakly excited due to nonlinear
interaction with the fundamental mode (1,1) such that they
oscillate in their linear or Duffing state. However, the
dynamics of the higher-order modes affects the response of
the driven mode. To illustrate this idea, we discuss a

minimal model to qualitatively capture the experimental
findings. In this model, we consider the mode (1,1) coupled
to the three modes ðn; nÞ with n ¼ 2, 3, 4 through

the potential
P

4
n¼2 V

ðn1Þ
ð11jnnÞ ¼

P
4
n¼2 λ

ðn1Þ
ð11jnnÞq

n
11qnn. If the

higher-order modes are in the harmonic regime, as
shown in Sec. V of the Supplemental Material [26], the
dynamic of the fundamental mode driven by a linear force
can be described by effective high-order nonlinearities as
follows:

q̈11ðtÞ ¼ −ω2
11q11ðtÞ − 2Γ11 _q11ðtÞ þ F cosðωdtÞ − γ1q311ðtÞ

− μ1q511ðtÞ − ν1q711ðtÞ; ð2Þ

where γ1 is the Duffing nonlinearity, whereas the quintic
and the septic nonlinearities have coefficients μ1 > 0 and
ν1 > 0. Using the rotating wave approximation (RWA) (see
Sec. V of the Supplemental Material [26]), we determine
the maximum amplitude and detuning [29]. For a suffi-
ciently strong drive, the vibration amplitude is large and the
nonlinear higher-order terms become increasingly impor-
tant. Figure 1(b) displays that the curve progressively
flattens by adding nonlinear self-interaction terms.
Furthermore, setting Amax as the maximum achievable
amplitude at a given drive force, we have that

ðωd;max − ω11Þ ¼
3γ1
8ω11

A2
max þ

5μ1
16ω11

A4
max þ

35ν1
128ω11

A6
max:

ð3Þ

Figure 2(a) shows an enlargement into the gray-shaded area
in Fig. 1(a), where the amplitude is almost independent of
the drive Vexc. However, nanometer-scale variations are
detected in all four curves signaled by small steps and kinks
on the plateaus. For ωd < ω22=2, we only see the deflection
pattern of the (1,1) mode. When ωd ≈ ω22=2, a (2,2) mode
pattern is observed superimposed over the (1,1) mode
pattern in the area A. Further increasing ωd, the (2,3) mode
is switched on abruptly and then transitions into the (3,2)
mode in the region B. For even larger ωd, the pattern of the
(1,2) mode appears which then switches to the (3,4) pattern
at the first shoulder in area C. Before they disappear again,
both patterns are observed simultaneously.
The appearance of higher-order modes ðm; nÞ in the

deflection profile is a signature of nonlinear mode cou-
pling. Together with the possibility to excite overtones of
the individual (m, n) modes [22], we argue that the complex
superposition of several modes is generated by an effective
nonlinear coupling between different types of modes and
overtones. Small continuous deviations from a smooth
response curve can qualitatively be described in terms of
nonlinear coupling with overtones [22]. Here we discuss
the discontinuous steps. They can be explained by an
indirect parametric nonlinear interaction mediated by the
overtones of the fundamental mode (m ¼ n) or direct
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parametric nonlinear interaction between the modes
(m ≠ n). We discuss two examples to illustrate this idea.
The first example is the indirect interaction of the driven

mode (1,1) with the (2,2) mode, with eigenfrequency
ω22 ≃ 2ω11. We consider the nonlinear interaction term

Vð22Þ
ð11j22Þ ¼

1

2
λð22Þð11j22Þq

2
11q

2
22 ð4Þ

between the two Duffing resonators q11 and q22 (for
simplicity and qualitative analysis, we neglect high-order
nonlinearities of the fundamental mode). Because of the
presence of an overtone of the fundamental mode, we use
the ansatz q11 ≃ ðu1eiωdt þ u3ei3ωdt þ c:c:Þ=2 [30]. Then,
the mixing term q211 ∝ u1u3ei4ωdt in Eq. (4) represents the
parametric excitation for the high frequency mode (2,2),
which becomes resonant and relevant as soon as
4ωd ≈ 2ω22. Using the RWA (see Supplemental Material,
Sec. V [26]), we obtain the numerical solutions for the
amplitudes of the (1,1) and the (2,2) mode shown in the left
panel of Fig. 2(b).

As a second example, we consider the direct interaction
between the driven mode (1,1) and the (1,2) mode
with eigenfrequency ω12 ≈ ð3=2Þω11. These modes are
described as before as two Duffing resonators for which
we have the nonlinear potential

Vð32Þ
ð11j12Þ ¼

1

2
λð32Þð11j12Þq

3
11q

2
12: ð5Þ

This parametric interaction becomes resonant and relevant
when 3ωd ≈ 2ω12: In the nonlinear interaction Eq. (5), the
term q311 ∝ u31e

i3ωdt represents the parametric excitation for
the mode (1,2). For this second example, the numerical
solution of the amplitudes is shown in the right panel of
Fig. 2(b).
To obtain further insight into this nonlinear interaction,

ωd is swept upward from a starting frequency above the
linear eigenfrequency (here ωd=2π > 326 kHz) such that
the mode (1,1) vibrates in its low-amplitude state. The raw
data without any further processing are shown in Fig. 3.
For the first example, the curves in Fig. 3(a) show the
subharmonic amplitude response of mode (2,2) for differ-
ent excitation strengths. Figure 3(b) displays a series of
power spectra taken during the ringdown of the mode. As

FIG. 2. Persistent response and visualization of deflection
patterns. (a) Enlargement of the gray area of Fig. 1(a) without
normalizing the y axis. The plateau reveals small steps and kinks
superimposed, some of them being marked by colored areas A, B,
and C. The red arrows indicate the positions where we captured
the deflection patterns for Vexc ¼ 4.6 V shown in the insets. The
black arrow indicates the frequency at which the ringdown
experiments shown in Fig. 4(a) are performed. (b) Numerical
solutions of the nonlinear coupling model (solid lines, coupled
modes; dashed lines, driven modes). Left: model interaction
between the mode (1,1) and the mode (2,2). Right: model
interaction between the mode (1,1) and the mode (1,2) (see text
for details).

FIG. 3. The subharmonic response functions of the flexural
mode (2,2) [(a),(b)] and the mode (1,2) [(c),(d)]. (a) Subharmonic
amplitude response of the (2,2) mode. (b) Frequency spectrum of
the ringdown for Vexc ¼ 5.0 V and ωd=2π ¼ 322.0 kHz
(instantly, ω11=2π ¼ 319 kHz) showing three integer overtones
of ωd. The drive is turned off at t ¼ 0. (c) Subharmonic response
of the flexural mode (1,2). (d) Same as (b) but for Vexc ¼ 7.0 V
and ωd=2π ¼ 332.5 kHz, showing three half-integer overtones of
ωd. The energy decay during ringdown is shown in Sec. IVof the
Supplemental Material [26].
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soon as the drive has been switched off, the components ωd
and 3ωd show a jump which is typical for a nonlinear
vibration in low-amplitude (harmonic) state. These com-
ponents can be associated with the fundamental mode with
ω11 and its odd overtone 3ω11 (≠ ω33). On the other side,
the components at 2ωd of the mode (2,2) decay smoothly.
Notice that the majority of the power is observed around
ω22. All these features are consistent with mode (2,2) being
parametrically driven by the mode (1,1) and its odd
overtone due to nonlinear coupling according to Eq. (4).
In Fig. 3(c), we show the subharmonic response of the

mode (1,2), when the fundamental mode oscillates in the
low-amplitude state. Upon increasing ωd, the amplitude is
suddenly pumped up when Vexc > 6.09 V. This is char-
acteristic for parametric coupling. Here, the parametric
excitation is stronger than in the previous example since the
nonlinear interaction with the mode (1,1) in Eq. (5) is direct
and not mediated by overtones. The ringdown in Fig. 3(d)
is performed for ωd=2π ¼ ð2=3Þω12=2π ¼ 332.5 kHz and
Vexc ¼ 7 V. The corresponding power spectra reveal the
half-integer frequencies ð3=2Þωd, ð6=2Þωd, and ð9=2Þωd
which decay to ω12, 2ω12, and 3ω12 after the drive is
switched off. Notice the absence of the overtones
of the mode (1,1). Again, these features are consistent
with a parametrical drive of the mode (1,2) by the
mode (1,1).
As an additional example, we shortly discuss the

possible excitation mechanism of the pattern observed in
area B of Fig. 2(a): The eigenfrequencies ω23 and ω32 differ
slightly from each other because of the small deviation of
the membrane from a square shape. The second
overtones of these frequencies 2ω23=2π ¼ 1636 kHz and
2ω32=2π ¼ 1624 kHz are close to 5ωd. We therefore argue
that these modes are excited subharmonically via nonlinear
interaction with the fundamental mode of type ∝ q511q

2
23

or ∝ q511q
2
32.

We will now turn to the analysis of the persistent
response of the (1,1) mode. We repeat the experiment
shown in Fig. 1(a) to explore the frequency response and
the ringdown behavior of the membrane subject to an
ultrastrong excitation Vexc ¼ 5.0 V at ωd=2π ¼ 338.6 kHz
marked as black arrow in Fig. 2(a), well above ω11 using
MI. With the excitation switched off (t ¼ 0), the time-
resolved power spectrum recorded in the frequency range
250 kHz to 2.5 MHz displayed in Fig. 4(a) shows the
contribution of ωd and its overtones up to sixth order.
Owing to the detuned drive ðnωd ≠ ωnnÞ, the frequency of
the individual contributions shifts toward a nearby eigen-
frequency of the membrane [31,32]. By comparison with
the eigenfrequencies, the most prominent modes are
identified as (i) flexural modes with m ¼ n and their
overtones [e.g., the second overtones of the modes (1,1)
and (2,2)]; (ii) flexural modes with m ≠ n, here the second
overtone of the (2,3) and the (3,2) modes and the fourth
overtone of the (1,2) mode; (iii) mixed-frequency response

such as 2ω11 þ ω22 in the decay of 4ωd (the detailed
identification of the mixed-frequency modes is shown in
the Supplemental Material, Sec. IV [26]).
Finally, combining the findings in the various regimes

enables us to establish a tentative stability diagram of the
complex vibrational behavior of the persistent response of
the membrane resonator, as shown in Fig. 4(b). When
increasing the excitation strength beyond the linear
response regime (weak drive), a gradual transition to the
Duffing behavior occurs (medium drive, yellow-shaded
area, denoted as D). This behavior persists up to very high
drive, but in a very small detuning range. For even larger

FIG. 4. Ringdown measurement in the flexural mode coupling
regime. (a) Frequency spectrum of the ringdown for Vexc ¼ 5 V
and ωd ¼ 338.6 kHz showing six overtones of ωd. The drive is
turned off at t ¼ 0. For details of the mode assignment and energy
decay, see Sec. IV in the Supplemental Material [26]. (b) Stability
diagram of the vibrational state of the membrane resonator as a
function of the detuning from ω11 and drive Vexc. The solid lines
are determined by combining experimental data fromMI (colored
dots) and IWLI data shown in Fig. S3 in the Supplemental
Material [26]. The inset shows an example of a coexistence of
flexural mode coupling and spatial overtones [22]: ringdown
recorded for Vexc ¼ 1.77 V at ωd=2π ¼ 331 kHz (marked by a
red circle in the main panel) showing a frequency splitting into
ω22 and 2ω11.
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Vexc and increasing detuning, the spatial modulation regime
with overtones sets in and can be observed up to very high
drive, but narrow detuning range. We denote this green-
shaded area labeled S as the strong-drive condition. Above
a certain drive strength and detuning, a new state appears in
which flexural mode coupling and spatially modulated
overtones are observed simultaneously (blue-shaded area
labeled Sþ F, as exemplified in the inset). Here, a ring-
down experiment is shown for the conditions marked with a
red circle in the main panel. After turning off the drive, the
components at 2ωd split into two branches that decay into
the 2ω11 and ω22 frequencies, namely, to one higher
flexural mode and to one spatial overtone of the funda-
mental mode. The appearance of the flexural modes defines
the ultra-strong-drive regime.
Summarizing, by combination of two complementary

experimental approaches and with nonlinear coupling
models, we described the observation of persistent response
of the membrane resonator and revealed unconventional
nonlinear interaction between the driven fundamental
mode, its overtones, and higher-order flexural modes,
which occurs under ultrastrong drive. This persistent
response state has, in the example shown here, an extension
of more than 50% of the eigenfrequency of the driven
mode, but even longer plateaus are shown in the
Supplemental Material, Sec. III [26]. Hence, ultrastrongly
driven membranes lend themselves to be utilized as
adaptive resonators without actively tuning their eigenfre-
quency, e.g., for energy transfer to resonating systems with
different degrees of freedom. We argue that the observed
phenomena might become even more pronounced when
increasing the Q factor by using thinner membranes. We
expect that our findings will help clarify other unusual
phenomena appearing in strongly nonlinear systems, also
beyond the mechanical case.
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