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We show that in order to guide waves, it is sufficient to periodically truncate their edges. The modes
supported by this type of wave guide propagate freely between the slits, and the propagation pattern repeats
itself. We experimentally demonstrate this general wave phenomenon for two types of waves: (i) plasmonic
waves propagating on a metal-air interface that are periodically blocked by nanometric metallic walls, and
(ii) surface gravity water waves whose evolution is recorded, the packet is truncated, and generated again to
show repeated patterns. This guiding concept is applicable for a wide variety of waves.
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Guiding waves is a challenge scientists and engineers
have grappled with for more than a century [1,2]. Although
waveguides come in a variety of geometries and are made
from numerous materials [3] they share one common
feature: The underlying guiding mechanism is based on
a spatial confinement of the wave in the transverse
direction. In this Letter, we study a new guiding concept
where rather than confining the wave, guiding is achieved
by a periodic truncation of its edges using a periodic array
of slits.
The motivation for our work originates from the phe-

nomenon of diffractive focusing [4–7], in which a plane
wave that passes through a single slit is first focused before
it expands. Here, the intensity increases up to a factor of 1.8
(4) in the case of a vertical (circular) slit. A periodic array of
these slits could therefore represent the diffractive lens
waveguide, in complete analogy to the well-known refrac-
tive lens waveguides [8].
After every slit, the wave propagates freely, until it

reaches the next slit where the edges are chopped off. This
elementary mechanism [9] supports different eigenmodes,
and the lowest mode can be guided over significant
distances with low propagation losses. Moreover, the on-
axis intensity can be significantly higher in comparison to
the freely propagating nontruncated case, even though each
slit removes part of the overall energy of the entire wave.
Diffractive guiding is therefore an attractive solution
whenever it is difficult to realize traditional waveguides,
for example, for electromagnetic waves in the terahertz
regime [10].

In our Letter, we study theoretically and experimentally
the phenomenon of diffractive guiding of surface plasmon
polaritons (SPPs) in space, as well as surface gravity water
waves (SGWW) in time. For SPPs we succeeded in
measuring the repeated propagation pattern of the first
and second eigenmodes created by a periodic array of slits
made from nanometric metallic walls. For SGWW we
obtain the propagation through several slits by recording
the full wave packet data, truncating the edges of the wave
data and starting a new measurement with the truncated
wave. We emphasize that many other types of waves,
including electromagnetic waves, sound waves or matter
waves can be guided using the same method.
The time evolution of paraxial plasmonic beams, like

other electromagnetic waves, follows from the paraxial
Helmholtz equation [11], which is formally equivalent to
the free Schrödinger equation. Similarly, the propagation of
surface gravity water waves under appropriate conditions is
governed by an equivalent equation [12]. In order to study
guiding, we assume perfectly absorbing slits, no reflections
and no losses. We decompose the array of slits into units
consisting of one slit and free propagation till the next
slit. The wave function ψ ¼ ψðχ; τÞ can thus be obtained
from the incident wave ψ0ðχ0Þ≡ ψðχ0; τ ¼ 0Þ directly
before the slit by the integral

ψðχ; τÞ ¼
Z

∞

−∞
dχ0Kðχ; τjχ0Þψ0ðχ0Þ; ð1Þ

where the propagator
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Kðχ; τjχ0Þ≡ 1ffiffiffiffi
iτ

p exp

�
iπ

ðχ − χ0Þ2
τ

�
Θ
�
1

2
− jχ0j

�
ð2Þ

is the product of the propagator of the free motion [4,5,13]
and theHeaviside step functionΘmodeling the truncation of
the wave function at the slit. Here, we use the dimensionless
propagation coordinate τ aswell as the transverse coordinate
χ ≡ x=a, which is scaled by the width a of the slit.
For optical as well as plasmonic waves, τ translates into

the propagation distance z according to τ≡ zλ=a2, where λ
is the wavelength [14,15]. In the case of a matter wave [13]
we have τ≡ ht=ðma2Þ, where t denotes the time, m the
mass of the particle, and h is Planck’s constant.
The wave function after the array of slits can be

computed by iterating Eq. (1), where the result of one
integration serves as the source for the next one.
Since the wave function is cut at the slits, there is some

intrinsic loss in diffractive guiding that depends on the
spatial distribution of the wave function at the slit. This fact
favors an analysis in terms of the eigenmodes of the system,
since only modes with the lowest losses survive after
passing through the array of slits. The periodicity of the
slits further reduces the problem to finding the eigenmodes
of just one unit of the system.
Since the eigenmode repeats itself after propagation

through one unit of the array, its wave functions from
one slit to the next may differ only by a constant factor. In
order to obtain the eigenmodes and eigenvalues we dis-
cretize the χ coordinate and cast the integral in Eq. (1) into a
matrix vector multiplication.
Hence, we arrive at the eigenvalue equation

Kτψ i ¼ μiψ i; ð3Þ

where Kτ is the propagator matrix for a separation τ
between the slits, while ψ i are the eigenmodes discretized
in χ. The corresponding eigenvalues μi are related to the
transmission coefficients Ti by Ti ¼ jμij2. The eigenmodes
and eigenvalues are computed [16] by the numerical
diagonalization of K.
In order to test experimentally the guiding capabilities of

this device, we consider first the case of SPPs, which are
electromagnetic surface waves propagating along a metal-
dielectric interface coupled to collective charge oscillations
inside the metal [17]. Figure 1(a) illustrates the correspond-
ing experimental setup.
In order to periodically truncate the edges of the beam,

we have used a plasmonic slit that consists of two silver
metallic walls having a height of several hundred nano-
meters. Since these beams are strongly confined to the
interface, most of the energy is either scattered or reflected
at an angle with respect to the optical axis from the tilted
metallic wall, and as a result, the wave cannot pass. We
have fabricated [18] several structures having a fixed

distance between adjacent slits, but with a different number
of slits on each structure.
Figure 1(b) displays such a structure with three succes-

sive plasmonic slits. In order to excite a specific mode
supported by such an array, with a desired wavefront, we
used a plasmonic near-field hologram coupler for control-
ling both the amplitude and phase of the excited plasmonic
beam [19,20]. Scanning electron microscope (SEM)
images of the gratings for the excitation of the first and
second modes can be seen in Figs. 1(c) and 1(e). The
amplitudes (solid curve) and phases (dashed curve) of the
corresponding modes are displayed in Figs. 1(d) and 1(f).
In comparison to other plasmonic waveguides, our wave-
guide exceeds in terms of propagation length that of hybrid
plasmonic waveguides and is comparable to a dielectric
loaded waveguide, although it is still less than a long-range
SPP waveguide [21]. A quantitative comparison can be
found in Table I.
We have solved Eq. (3) for the separation τ ¼ 0.211

between successive slits, corresponding to the experimental
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FIG. 1. Experimental setup for diffractive guiding of surface
plasmon polaritons (SPPs): (a) Our device consists of a grating
coupler for the excitation of the mode, plasmonic walls for
truncation of the wave, and a near-field scanning optical micro-
scope (NSOM) tip. (b) Scanning electron microscope (SEM)
image of our diffractive waveguide device with three plasmonic
slits. (c) and (e) SEM images of the grating couplers used for the
plasmonic excitation of the first and second modes, shown in (d)
and (f) by the truncated initial amplitude and phase. (g) SEM
image of a single metallic wall.
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parameters L ¼ 39.2 μm (the distance between successive
slits), a ¼ 14 μm and λ ¼ 1055 nm neglecting losses, and
present the resulting intensity distribution patterns of the
propagating first and second mode in Figs. 2(a) and 2(c),
respectively. The corresponding eigenvalues are μ1 ¼
0.9621þ 0.1163i and μ2 ¼ 0.778 − 0.396i lead to the
intensity transmission coefficients T1 ¼ 0.94 and T2 ¼
0.76. It is noteworthy that the overall transmission of the
first mode is quite high, despite the fact that part of the
energy is truncated by the slits. Moreover, for the first mode
we get a 20% increase in the intensity at the focal point
relative to the peak value in the intensity profile of the
inserted eigenmode, due to diffractive focusing [4–7].
Notice that the simulations presented here do not take

into account back propagation. Depending on the imple-
mentation, interference can appear during the propagation
between the slits, due to back reflections and scattering
from the edges. We emphasize that because of plasmonic
losses, the intensity transmission coefficients of the same
eigenmodes are reduced from 0.94 to 0.86 and from 0.76 to
0.70, for the first and second eigenmodes, respectively,
calculated for silver-air interface with the relevant silver
permittivity [24] for the above wavelength.
Figure 2(b) presents experimental measurements of

the intensity distribution patterns for the first mode propa-
gating through a periodic structure of plasmonic slits, after
it is excited by the modulated grating coupler shown in
Fig. 1(c), and after passing through one, two, three slits
(four different structures) [25]. In each case, we have
measured the intensity distribution only after the last slit. In
this way, we are not affected by reflections from the next
slits, and we get a more precise measurement of the
intensity distribution after each slit. The grating excites a
pattern similar to the desired first mode, in excellent
agreement with the simulation. Moreover, the pattern
repeats itself after having passed through a new slit that
truncates the sides of the wave.
Next, we show experimentally the excitation and guiding

of the second mode corresponding to the second largest
eigenvalue, μ2 and supported by the same periodic structure
of plasmonic slits. This mode has two main lobes, with

a π-phase difference between them, as shown in Fig. 1(f).
Similarly to the excitation of the first mode, we designed a
specific grating coupler [19] for the second mode [see
Fig. 1(e)], and then measured the beam propagation
through several slits as displayed in Fig. 2(d). Because
of the phase difference between the two lobes, destructive
interference takes place along the entire propagation axis at
the center of the slit. It seems that for the second mode
measurement after three slits, shown in the rightmost
square in Fig. 2(d), the plasmonic walls fail to completely
block the SPP propagation and a relatively high intensity
appears on the edges.
Although we are not able to measure the transmission

coefficient directly, since in each measurement we scan an
area after a different number of slits and use different
structures, we can still determine it by calculating which
part of the intensity should remain, assuming we truncate
the wave exactly in the position of the next slit and have an
ideal slit. From the experimental measurements of the first
mode we found the transmission coefficients 0.9, 0.89,
0.91, 0.95, and 0.935 by integrating the intensity that lies
within the slit relative to the total intensity, at the theoretical
positions of slits number 1, 2, 3, 4, and 6, respectively. The

TABLE I. Comparison of diffractive guiding propagation
distances (Lprop) and typical values of other waveguides for
several types of waves. For SPPs, gold-air interface for telecom
wavelength λ0 ¼ 1.55 μm was analyzed and dielectric loaded
waveguides are presented for the values that appeared in the
typical values column. For terahertz waves, the calculation was
made using 3D simulation, with two transverse axes, using a
square aperture.

λ=period a L Lprop Typical Lprop

SPPs 1.54 μm 20 μm 60 μm 123 μm 40–90 μm [21,22]
THz 0.15 mm 2 mm 6 mm 233 cm 1–500 cm [23]
SGWW 1.59 s 4.2 s 8.5 m � � � � � �

FIG. 2. Diffractive guiding in space: Theory versus experiments
based on surface plasmon polaritons. Simulations of the propa-
gation intensity patterns jψ j2 for the first (a) and second (c) mode.
The vertical red lines represent the apertures truncating the wave.
Experimental measurement of the plasmonic intensity distribu-
tion beyond the grating coupler and after passing through one,
two and three slits, for the first (b) and second (d) modes. For a
measurement of the first mode after passing through five slits see
Supplemental Material [25]. Each experimental plot is a combi-
nation of four different measurements taken with four different
structures. The experimental intensity plots are in arbitrary units.
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average result is 0.917� 0.026, which is in good agree-
ment with the theoretical value T1 ¼ 0.94.
For the second mode, we obtain the values 0.88, 0.77,

0.61, and 0.43 of the transmission coefficient with respect
to the positions of the slits 1, 2, 3, and 4, which indicates
that in the experiment, the confinement of the second mode
is more difficult to achieve, as can be seen in Fig. 2(d). The
average value reads 0.67� 0.19, while the theoretical value
is T2 ¼ 0.76.
Diffractive guiding is a general wave phenomenon, and

is not limited to plasmonic beams. We now present a
different example for guiding which works in the time
domain and relies on surface gravity water waves. Indeed,
the propagation of the SGWW envelopes also follows
[12,31–35] from the free Schrödinger equation. Hence,
the above eigenmode analysis applies, with the correspond-
ing propagator for deep water waves [36].
For this purpose we modulate the envelope of the surface

water gravity wave according to the first eigenmode.
Therefore, the wave packet generated by the wave maker
reads ηðt; x ¼ 0Þ ¼ a0AðtÞ cos½ω0tþ ϕðtÞ�, with the carrier
frequency reading ω0 ¼ 10 rad=s and the initial amplitude
a0 ¼ 4.9 mm. Here AðtÞ and ϕðtÞ represent the amplitude
and phase of the eigenmode. Then, the time-dependent
elevation of the wave was measured using wave gauges at
different positions in the tank and stored in a computer.
These data were numerically truncated at the location of the
next temporal slit, and were then sent to the wave maker for

a new excitation based on the previous measurement. This
way, we were able to cascade several slits in the time
domain and observe the effect of diffractive guiding.
Figure 3 shows our measurements for the water

wave experiment, where the temporal slit has a width
of t0 ¼ 4.2 s, with the period L ¼ 8.5 m, to match the
parameters that were used for the simulation of Fig. 2(a).
We worked with low steepness waves (ε ¼ 0.05) so that the
nonlinear terms of the wave equation [37] can be neglected.
In our experiment we record the full temporal variation

of the wave packet, thus enabling us to extract not only its
amplitude, but also its phase. Figure 3 shows that the
pattern repeats itself for both the intensity and phase
measurements, as expected. The results are normalized
in each run by the maximal intensity amplitude.
To emphasize the generality of the phenomenon for

different types of waves, we present a quantitative com-
parison between losses in a diffractive guiding system and
other known waveguides. Table I shows several examples
of three types of waves and compares between the
propagation distance in our system relative to other
proposed and explored waveguides.
The concept of cascading several slits can be also used

with a different scheme in order to achieve higher intensity
and a narrower spatial confinement. Figure 4 shows such a
structure that consists of four slits, each slit having half the
width of the previous slit. As a result, an initial plane wave
is focused repeatedly. This type of structure can be applied
for tapering purposes, to couple waves to a system with
better efficiency. It can also be located at the end of the
periodic array of slits to maximize the intensity at the end
and to connect between different systems.
We also investigate two more types of periodic struc-

tures. A periodic array of slits in which each unit cell
consists of two different slits with different widths and
different propagation distances, and a periodic array of slits
where successive slits are transversely shifted. For each of
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FIG. 3. Diffractive guiding in time: theory versus experiment
based on surface gravity water waves. Theoretical patterns (a) and
experimental measurements (b) of the amplitude. Theoretical (c)
and experimental (d) distributions of the phase, obtained from the
measurements by the Hilbert transform [25] in a frame of
reference at moving with the velocity cg ¼ 0.49 m=s, and low
steepness, ε ¼ 0.05. Each experimental plot is a combination of
four different measurements.
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FIG. 4. Diffractive focusing and guiding for tapering. Intensity
distribution simulation of the propagation of a plane wave
through an array of slits, where each slit is located at the focal
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inset shows the intensity profile along χ ¼ 0, the white dashed
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these structures we succeeded to use the same method that
we showed here in order to find the eigenmodes of the
system. More details can be found in the Supplemental
Material [25].
In summary, we have shown a new type of wave guide

based on the phenomenon of diffractive focusing, and have
experimentally measured the effect in the spatial domain
using plasmonic beams, and in the time domain employing
surface gravity water waves. The propagation losses of our
diffractive plasmonic waveguide are comparable to existing
state-of-the-art guiding devices, e.g., dielectric loaded
waveguides. Unlike other guiding systems, the eigenmodes
evolve also in the transverse direction during the propa-
gation. Nevertheless, we recover after propagation in and
truncation after each unit cell, the same pattern.
This concept of guiding using a periodic structure of

slits can be applied to many different types of waves such
as matter waves, electromagnetic waves, sound waves,
etc. Specifically, the method may be useful in several
regions of the electromagnetic spectrum, such as terahertz
regime [10], where it is quite difficult to realize a wave-
guide by any other means. Moreover, we emphasize that
this approach of cascading slits can help to achieve a higher
energy concentration at specific points compared to free
propagation.
Finally, we note that the group velocity in such a system

is close to that of a freely propagating wave. We therefore
believe that diffractive guiding can be useful in a wide
range of applications.
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