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Parity-time (PT) symmetry, satisfied when a system commutes under combined parity and time-reversal
operations, enables extreme optical responses in non-Hermitian systems with balanced distributions of gain
and loss. In this Letter, we propose a different path for PT symmetry utilizing the evanescent field excitation
of anti-PT-symmetric structures, which anticommute with the PT operator and do not necessarily require
gain. Beyond offering a robust platform to explore PT symmetry, our study showcases an important link
between non-Hermitian physics and near-field interactions, with implications in nanophotonics, plas-
monics, and acoustics for nanoimaging, sensing, and communications.
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Under the general framework of non-Hermitian physics,
parity-time (PT) symmetry has opened powerful opportu-
nities [1] for intriguing wave manipulations not available in
Hermitian setups. Such examples include robust wireless
power transfer [2], anisotropic transmission resonances
(ATR) and unidirectional invisibility [3–5], laser-absorber
pairs [6–7], among several others. These features have been
showcased in a wide range of classical settings, from
photonics [8] and plasmonics [9–10] to metamaterials
[11–13], as reviewed in [14]. As a different but related
phenomenon, anti-PT symmetry has also been drawing
increased attention in recent years. While PT-symmetric
Hamiltonians commute with the joint parity-time operator,
anti-PT-symmetric ones anticommute with it. In contrast
with PT-symmetric systems, whose implementation
requires a precise balance between loss and gain distribu-
tions [14], systems respecting anti-PT symmetry do not
necessarily need gain [15–17], and support other interesting
features, e.g., constant refraction [18], energy-difference
conserving dynamics [19], and asymmetric mode switching
for symmetry-broken modes [20]. Given their easier imple-
mentation, various experimental platforms realizing anti-PT
symmetry have emerged in rapid succession in the past
years, ranging from atomic vapors [21], electrical circuits
[19], and diffusive systems [22], to coupled optical wave-
guides [20], microcavities [23], and optical fibers [24],
offering different approaches to enable the required coupling
mechanism for effective anti-PT-symmetric Hamiltonians.
The lack of gain, however, prevents some of the most
exciting features of PT-symmetric structures, as they are
bounded by energy conservation and passivity constraints.
These challenges are sharedwith recent proposals to observe
phenomena reminiscent of PT symmetry in passive systems,
by eithermodulating loss distributions in space [25,26] or by
invoking slowly decaying modes [27].

Along a different research line, near-field wave physics
has been extensively explored in the last decades [28], in
connection with advances in near-field microscopy and
nanofabrication techniques. Here, evanescent fields play a
critical role, offering the possibility to go beyond the
diffraction limit in imaging systems [29] and to surpass
the blackbody limit in radiative heat transfer [30–37], with
promising applications in thermophotovoltaics [38–41] and
thermal management [42–44]. Also in acoustics, near-field
physics has been offering interesting opportunities to
engage the transverse spin of evanescent waves for near-
field directional coupling [45–50], important for acoustic
communications and sensing.
In this Letter, we explore the opportunities enabled by

near-field physics and evanescent field excitations in anti-
PT-symmetric systems. We find that effective steady-state
PT-symmetric phenomena are enabled in these structures
when excited by evanescent fields, overcoming the need for
balanced loss and gain or for controlled release of stored
energy [51–52], and overcoming the limitations of pseudo-
PT-symmetric phenomena in passive systems [25–27]. Our
study not only enriches near-field physics and provides new
strategies for near-field manipulation based on PT sym-
metry in simple photonic setups, but it also opens a
pathway to shed light into non-Hermitian phenomena using
near-field technology.
Scattering in anti-PT-symmetric coupled resonators

systems.—We start by considering a pair of coupled
resonator optical waveguides (CROWs) [53–54] connected
through two different coupled resonators, as sketched in
Fig. 1(a). For convenience of notation, we set the zero
frequency to the resonator frequency in the CROWs. The
resulting dispersion relation is ω ¼ −2 cos k with angular
frequency ω and wave number k in units of the interreso-
nator coupling coefficient and the inverse of the CROW
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period, respectively. In addition, the scattering problem at
the two ports is described by the effective Hamiltonian
Heff ¼ Δ0I2 þHðAPTÞ, where Δ0 is the common offset of
the scatterer, I2 is a 2 × 2 identity matrix, and

HðAPTÞ ¼
�
Δþ jγ −jκ
−jκ −Δþ jγ

�
. The coefficient γ > 0

is the damping frequency, identical in the two resonators,
while the resonance frequencies are detuned from each
other as Δ0 � Δ. We assume an imaginary coupling −jκ
with κ > 0 implemented, e.g., through resistive coupling
[19,55], or generally through an auxiliary non-Hermitian
cluster [59]. The scatterer obeys anti-PT symmetry, since
HðAPTÞ satisfies the anticommutation relation

fHðAPTÞ; PTg ¼ 0 with the parity operator P≡
�
0 1

1 0

�

and the time-reversal operator T performing complex
conjugation. The coupling strength between the scatterer
and the left and right CROW ports is equal to c.
The generalized scattering matrix S [60] relates the

signal amplitudes traveling toward and away from the
scatterer from the left and right CROW ports, i.e.,�
LðoÞ

RðoÞ

�
¼ S

�
LðiÞ

RðiÞ

�
≡

�
rL tLR
tRL rR

��
LðiÞ

RðiÞ

�
. Using the

method introduced in [61], we can obtain the explicit form
of the S matrix for ejωt time dependence as [62]

S¼−I2−2jc2 sink

�
ω

�
1−1

2
c2
�
I2−Heff − jc2 sinkI2

�−1
;

ð1Þ

where sin k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ω2

p
=2 for propagating waves when

ω ∈ ð−2; 2Þ and sin k ¼∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 4

p
=ð2jÞ when ω > 2

(ω < −2), corresponding to evanescent wave inputs (out-
puts) decaying toward (away from) the scatterer.
From Eq. (1), we find equal transmission amplitudes

tLR ¼ tRL ¼ tS between left and right CROWs for both
propagating and evanescent waves, due to reciprocity
[63,64]. For propagating waves, the scattering features
are determined by jWI2 ¼ ðSþ I2Þ−1 − ðSPT þ I2Þ−1 with

W ≡ ½ωð1 − 1
2
c2Þ − Δ0�=ðc2 sin kÞ and SPT ≡ PTSPT,

which follows directly from Eq. (1) and the anti-PT
symmetry of the scatterer, implying that, independent from
the specific properties captured by W, there is a
relation between the transmission coefficient tS and the
left and right reflection coefficients rL and rR:
ðr�R − r�LÞ=t�S ¼ ðrL − rRÞ=tS. In the special scenario when
γ ¼ 0 and thus the anti-PT-symmetric Hamiltonian HðAPTÞ

also satisfies the commutator relationship ½HðAPTÞ; σzT� ¼
0 with σz ¼

�
1 0

0 −1
�
, we find jrLj2 − jtSj2 ¼ 1 and

tSr�R ¼ rLt�S [65].
Quite interestingly, for evanescent waves the scattering

response can become PT symmetric, despite the absence of
gain in the system. To show this feature, we set
ω ¼ Δ0=ð1 − 1

2
c2Þ > 2, operating the CROWs at cutoff,

and consequently the S matrix in Eq. (1) becomes

S ¼ −I2 − 2jcr½−γI2 −HðPTÞ − jcrI2�−1; ð2Þ

where cr ≡ c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 4

p
=2, and the effective Hamiltonian

HðPTÞ ≡
�−jΔ −κ

−κ jΔ

�
is PT symmetric, obeying the com-

mutator relationship ½HðPTÞ; PT� ¼ 0. The S matrix in
Eq. (2) satisfies the fundamental relation SPT ¼ S−1,
interestingly supporting PT-symmetric scattering at the
(angular) frequency −γ ∈ R, with emerging non-
Hermiticity parameters (effective gain and loss) determined
by the frequency detuning Δ. Yet, the physical structure is
fully passive for γ ≥ jκj [55]. The fact that evanescent
waves may enable tailored PT-symmetric phenomena with-
out requiring gain can be heuristically explained consid-
ering that reflection and transmission coefficients for
evanescent waves are not bound by power conservation,
since unidirectional evanescent waves do not transport
energy. Reflection and transmission coefficients larger than
unity in complementary bilayers, as in Fig. 1(b), have been
shown to enable subdiffractive focusing and anomalous
transparency phenomena [66,67], and we connect our
findings to the unusual physics of these systems below.
In the CROW setup of Fig. 1(a), the PT-symmetric

Hamiltonian for evanescent waves implies features com-
monly found for propagating waves in systems with bal-
anced gain and loss [4]. For instance, despite the fact that
our system is fully passive, in the following we show that it
can enable ATRs and PT-symmetric phase transitions,
which cannot be achieved in passive systems excited
by propagating signals because of power conservation
[25–27]. ATR implies unimodular transmission in both
directions, and at the same time zero reflection only from
one side, a response that is forbidden in passive systems.
Since evanescent waves do not carry energy on their own,
and energy flow only arises in the presence of two
evanescent waves decaying in opposite directions [55],

FIG. 1. Schematics of anti-PT-symmetric (a) coupled resona-
tors and (b) photonic heterostructures.
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the ATR phenomenon not only is allowed in our scenario,
but it also exhibits intriguing new features in terms of
energy transfer compared to ordinary PT-symmetric sys-
tems. While for excitation from one side, ATR for evan-
escent waves completely suppresses reflection and thus
energy flow, from the opposite port the ATR induces a
strong reflection and thus opens a channel for unidirec-
tional energy flow, offering unique opportunities for robust
near-field energy transfer and sensors that are bound to
extract energy only from the side of the object to be sensed.
In our structure excited with evanescent inputs, the

condition rR ¼ 0 combined with passivity and Eq. (2)
requires the matching conditions γ ¼ κ and Δ ¼ cr. In this
scenario, indeed we find an ATR, with transmission tS ¼ 1
and left reflection rL ¼ 2jcr=κ. Note that the S matrix in
Eq. (2), and thus the scattering parameters, univocally
depend on three ratios: Δ̂≡ Δ=κ, γ=κ, and cr=κ. In Fig. 2
(a), we fix γ=κ ¼ cr=κ ¼ 1, and show the evolution of rL,
rR, and tS in the complex plane as a function of Δ̂ ∈ ð0; 6Þ
(see color bar). When Δ̂ ¼ 0 (symmetric scatterer), the
left and right reflections are equal, as expected,
rL ¼ rR ¼ ð1þ 2jÞ=5, which is crossed by the trajectory
of tS at Δ̂ ¼ ffiffiffi

5
p

. The ATR (tS ¼ 1, rR ¼ 0, and rL ¼ 2j)
occurs for Δ̂ ¼ 1 (red arrows), for which the magnitude of
rL is larger than unity.
As we vary the frequency detuning Δ from Δ2 < κ2 to

Δ2 > κ2, the scatterer in Fig. 1(a) transitions from its PT-
symmetric phase to the PT-symmetry-broken phase,
depending on whether the eigenstates of Heff (or equiv-
alently HðAPTÞ) are individually eigenstates of the PT
operator [18]. Interestingly, by exploiting evanescent wave
excitations, this precise phase transition can be demon-
strated in a fully passive scenario for any γ ≥ jκj [55].

Correspondingly, in this evanescent wave regime our
system supports the typical scattering phase transition of
PT-symmetric systems, arising when the eigenvalues of S in
Eq. (2) go through an EP, going from being an individually
unimodular (PT-unbroken phase) to an inverse-conjugate
pair (PT-broken phase) [7,68]. The evolution of the
eigenvalues of S with Δ̂ ∈ ð0; 6Þ is shown in Fig. 2(b),
highlighting the emergence of an EP and a phase transition,
occurring at Δ̂ ¼ �1 independent of the specific values of
γ=κ and cr=κ.
In order to verify these predictions in a realistic system,

we performed full-wave simulations of a fully
passive electronic circuit implementing the response of
Fig. 1(a) using Advanced Design System (ADS), as
detailed in [55]. The retrieved scattering coefficients
and eigenvalues are shown in Fig. 2 with symbols, in
clear agreement with the theoretical predictions based on
our Hamiltonian model. The simulation details together
with the steady-state time dependent signals and field
profiles at the ATR point are given in [55]. At the phase
transition, a sublinear variation of the eigenvalue
dispersion with Δ̂ indicates interesting opportunities for
sensing, as achieved in several PT-symmetric scenarios in
recent years [69–71]. Yet, here the considered geometry
with γ ¼ κ > 0 is fully passive, and PT symmetry is
enabled by its excitation with evanescent waves. This
opens unique opportunities for noninvasive near-field
sensing with superior performance.
Scattering of evanescent waves in anti-PT symmetric

photonic heterostructures.—Having determined how evan-
escent waves can enable PT-symmetric features when
exciting suitably tailored passive systems, we turn our
attention to photonic heterostructures that may enable this
functionality in free space (with permittivity ε0 and
permeability μ0), in connection with the geometry in
Fig. 1(b) and with a broad range of near-field imaging
setups. We assume a pair of conjugate slabs [66], for
instance a double-positive slab with a balanced double-
negative slab of equal thickness h, with relative permittivity
and permeability ε1 ¼ ε0 − jε00, μ1 ¼ μ0 − jμ00 and
ε2 ¼ −ε0 − jε00, μ2 ¼ −μ0 − jμ00, where both ε0 and μ00
are positive. This structure generalizes the scenario con-
sidered in Pendry’s superlens by incorporating an
equal level of material loss ½ε00; μ00 > 0� or gain [67],
corresponding to the first proposal of an anti-PT symmetric
structure [15].
Without loss of generality, consider now the excitation of

this system by transverse-electric waves incident in
the xz plane [55]. The total transfer matrix Mtot can be
written as [55]

Mtot ¼ L−1Pð2ÞPð1ÞL; ð3Þ

obtained from the continuity of the tangential electric
and magnetic fields, and it involves the multiplication of

FIG. 2. Effective PT-symmetric response for evanescent waves
in Fig. 1(a): variations in the complex plane of (a) scattering
parameters and (b) eigenvalues, associated with the S matrix in
Eq. (2), as Δ̂ increases from 0 to 6, see the color bar. Red arrows
indicate Δ̂ ¼ 1 and the black dashed lines represent reference unit
circles centered at the origin. Other parameters are
γ=κ ¼ cr=κ ¼ 1. In the same figure, the corresponding results
retrieved from ADS simulation of a fully passive circuit corre-
sponding to Fig. 1(a)[55], are indicated by various symbols.
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the transmission matrices PðnÞ of each slab n ¼ 1, 2 with
the resolving matrix L (and its inverse L−1) for the
tangential fields. For evanescent wave excitation, the

background axial wave number kð0Þz ¼ −jωβ̂=c0 with
β̂≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkxc0=ωÞ2 − 1
p

> 0, c0 ¼ 1=
ffiffiffiffiffiffiffiffiffi
μ0ϵ0

p
and kx ∈ R

being the transverse wave number. In this case, Mtot in
Eq. (3) can be written as

Mtot ¼
�
a� −jb
jp a

�
; ð4Þ

where the elements b, p ∈ R, a ∈ C, related by
jaj2 − bp ¼ 1, i.e., detMtot ¼ 1, stemming from
reciprocity. Like in the previous example, the system
supports a PT-symmetric scattering response for evanescent

waves, with the corresponding scattering matrix S ¼�−jp=a 1=a
1=a −jb=a

�
obeying SPT ¼ S−1. Surprisingly,

for the photonic heterostructure in Fig. 1(b), this
result is valid irrespective of any specific value of
fβ̂; ε0; μ0; ε00; μ00g [72], including the scenario with ε0 < 0
and μ0 > 0 corresponding to paired epsilon-negative
and mu-negative layers [66], and holding also for trans-
verse-magnetic evanescent waves.
We proceed to explore the ATR phenomenon for

evanescent waves in this setup. To this end, we notice
that rL ≡−jp=a ¼ 0 requires that the transmission
amplitude jtSj≡ j1=aj ¼ 1. Correspondingly, the reflec-
tion asymmetry Δr≡ jrR − rLj with right reflection
rR ≡−jb=a is found to be

Δr¼
				2ðk

0μ00−k00μ0Þðk0μ0 þk00μ00Þ½cosð2k0ĥÞ−coshð2k00ĥÞ�
ðk02þk002Þðμ02þμ002Þ

				;
ð5Þ

where k0 and k00 are the real and imaginary parts of the

(normalized) axial wave numbers k̂ð1;2Þz ≡ kð1;2Þz c0=ω ¼
k0 ∓ jk00 [with kðnÞz ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εnμnω
2=c20 − k2x

p
] in the n ¼ 1, 2

slab of normalized thickness ĥ≡ hω=c0. In the
special scenario corresponding to Pendry’s superlens, when
the material loss or gain is zero, i.e., ε00 ¼ μ00 ¼ 0, the

reflection asymmetry Δr ¼ 0, since in this case k̂ð1Þz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0μ0 − 1 − β̂2

q
and thus either k0 or k00 is also zero. Indeed,

for Pendry’s superlens, both left and right reflection rL;R ¼
0 and the transmission amplitude tS ¼ 1 with zero phase
delay, as confirmed by Eq. (3) after realizing that
Pð2ÞPð1Þ ¼ I2 when ε00 ¼ μ00 ¼ 0. More generally, this
result shows that the unusual response of conjugate
materials when excited with evanescent waves, including
the evanescent growth responsible for subdiffraction

imaging [73], can be directly connected with the effective
PT-symmetric features of these systems and their ATR
features supported by evanescent wave excitation of anti-
PT-symmetric structures [74]. Conversely, we envision that
the connection highlighted here can extend the function-
ality of metamaterial superlenses to non-Hermitian scenar-
ios with loss (or gain), and provide new strategies for near-
field imaging in diverse platforms based on PT-symmetry
for evanescent waves.
To gain further insights into the ATR phenomenon

in this structure, we study the case μ0 ¼ ε0 ≥ 1 and
β̂ ¼ β̂ATR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε02 − ε00μ00 − 1

p
> 0, which results in

k00 ¼ k0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0ðε00 þ μ00Þp

=
ffiffiffi
2

p
. As before, we set the left

reflection rL ¼ 0. For weak loss or gain, i.e., jε00=ε0j ≪ 1
and jμ00=μ0j ≪ 1, we obtain the ATR for μ00 ¼ μ00ATR

μ00ATR ≈ ε00
�

3ðε02 − 1Þ
3ð1− ffiffiffiffiffiffiffiffiffiffiffiffiffi

ε02 − 1
p

ĥε0Þ þ ðε02 − 1Þð3þ ĥ2ε02Þ
− 1

�
:

ð6Þ

In Fig. 3(a), μ00ATR is plotted for ĥ ¼ 1 against its
numerically calculated value. As expected, near the edge
where ε00 is comparable with ε0, Eq. (6) deviates more
strongly. Interestingly, we find that the required μ00ATR for
ATR is negative, indicating that here the structure requires
gain. In addition, μ00ATR and the corresponding reflection
asymmetry Δr at the ATR, shown in Fig. 3(b), approach
zero together with ε00 regardless of the specific value of ε0,
yielding the scenario of lossless conjugate slabs, like in
Pendry’s superlens.
Finally, we show PT-symmetric phase transitions in the

setup of Fig. 1(b) with ĥ ¼ 1 by varying the (normalized)
decay rate β̂ of the evanescent inputs, which can be
controlled by the transverse wave number kx. For this
demonstration, we fix ε0 ¼ 1.5 and pick the specific value

FIG. 3. 3D plots of (a) the required μ00ATR and (b) the corre-
sponding reflection asymmetry Δr at ATRs versus ε0 and ε00 for
evanescent waves in Fig. 1(b). In (a), the unmeshed cyan surface
denotes the approximated μ00ATR using Eq. (6). Other common
parameters are μ0 ¼ ε0, β̂ ¼ β̂ATR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε02 − ε00μ00ATR − 1

p
, and

ĥ ¼ 1.
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ε00 ≈ 0.803, such that an ATR with reflection asymmetry
Δr ¼ 2 [see Fig. 3(b)] occurs at μ00 ¼ μ00ATR ≈ −0.133 and
β̂ ¼ β̂ATR ≈ 1.16. The ATR coincides with an EP at the
phase transition, as seen in Fig. 4(a), which shows the
logarithm of the eigenvalue amplitude jλ�j of the S matrix
versus β̂. Distinct from the previous scenarios in Fig. 2(b),
the S matrix here reenters the symmetric phase, corre-
sponding to ln jλ�j ¼ 0, after a region of broken symmetry
as we increase β̂. In Fig. 4(b), we show the corresponding
variation of the scattering parameters with respect to β̂.
Besides the designed ATR response at β̂ ¼ β̂ATR ≈ 1.16,
the system experiences a second ATR at β̂ ≈ 2.6 with
reversed response, i.e., zero reflection from the right rR ¼ 0
and a finite left reflection ln jrLj ≈ −1.6. Noticeably, the
near-unitary transmission jtSj and weak reflection jrLj are
robust in terms of β̂, of great interest for near-field imaging,
as it can apply to a wide range of transverse wave numbers
for high-resolution images.
Conclusions.—We have shown how the near-field

excitation of anti-PT symmetric systems can support
PT-symmetric responses through the interaction with evan-
escent waves, overcoming the requirement of balanced loss
and gain. Using two representative anti-PT symmetric
structures involving coupled resonators and photonic het-
erostructures, we have shown that the landmarks of
PT-symmetric responses can be unveiled by evanescent
wave excitations, demonstrating ATRs and scattering phase
transitions and verifying our predictions in a realistic fully
passive circuit using full-wave simulations. We have also
shown how the unusual physics of conjugate slabs, sup-
porting negative refraction and evanescent growth, can be
described in the framework of non-Hermitian physics,
generalizing the response of Pendry’s superlens for evan-
escent waves to scenarios in which loss (or gain) can enable
additional interesting features typical of PT-symmetric

scenarios. These concepts open interesting possibilities
for evanescent wave manipulation, extending the machi-
nery of PT-symmetry and non-Hermitian physics to near-
field optics and acoustics, for applications in sensing,
imaging and communications. In addition, these findings
offer a new playground to test PT-symmetry phenomena in
inherently stable platforms by simply exciting them with
evanescent fields.
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