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We consider the problem of the formation of soliton states from a modulationally unstable initial
condition in the framework of the Schrödinger-Poisson (or Newton-Schrödinger) equation accounting for
gravitational interactions. We unveil a previously unrecognized regime: By increasing the nonlinearity, the
system self-organizes into an incoherent localized structure that contains “hidden” coherent soliton states.
The solitons are hidden in the sense that they are fully immersed in random wave fluctuations: The radius of
the soliton is much larger than the correlation radius of the incoherent fluctuations, while its peak amplitude
is of the same order of such fluctuations. Accordingly, the solitons can hardly be identified in the usual
spatial or spectral domains, while their existence is clearly unveiled in the phase-space representation. Our
multiscale theory based on coupled coherent-incoherent wave turbulence formalisms reveals that the
hidden solitons are stabilized and trapped by the incoherent localized structure. Furthermore, hidden binary
soliton systems are identified numerically and described theoretically. The regime of hidden solitons is of
potential interest for self-gravitating Boson models of “fuzzy" dark matter. It also sheds new light on the
quantum-to-classical correspondence with gravitational interactions. The hidden solitons can be observed
in nonlocal nonlinear optics experiments through the measurement of the spatial spectrogram.
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Understanding the processes of self-organization in
conservative Hamiltonian systems is a difficult problem
that has generated significant interest. For nonintegrable
wave systems, the formation of a coherent soliton state
plays the role of a “statistical attractor” for the Hamiltonian
system [1–4]. It is thermodynamically advantageous for the
system to generate a large scale soliton, because this allows
us to increase the amount of disorder (“entropy”) in the
form of thermalized small scale fluctuations [1–8].
The physical picture becomes more complex when the

system exhibits long-range interactions, which dramatically
slow down the thermalization process. A detailed under-
standing of this process is a subject of growing interest, in
relation with peculiar features such as violent relaxation,
ergodicity breaking, or inequivalence of thermodynamic
ensembles [9]. In this respect, the Schrödinger-Poisson
equation (SPE) (or Newton-Schrödinger equation) appears
as a natural theoretical framework for studying a wave
system with long-range interactions. The SPE was pro-
posed with the aim of investigating quantum wave function
collapse in the presence of a Newtonian gravitational
potential [10,11]. Actually, the SPE may be obtained as
the nonrelativistic limit of the self-gravitating Klein-
Gordon equation [12,13] and, thus, describes the coupling
of classical gravitational fields to quantum matter states.
Soliton solutions of the SPE [14] have been used to
introduce the concept of Bose stars [12,15]. More recently,

the SPE has been proposed for a quantum mechanical
formulation of dark matter that would solve the “cold dark
matter crisis,” e.g., the formation of a cusp in the classical
description of cold dark matter [16–22]. Indeed, recent 3D
numerical simulations of the SPE realized in the cosmo-
logical setting remarkably reveal that, as a rule, the system
self-organizes into a large scale soliton core, which is
surrounded by an incoherent structure that appears con-
sistent with the classical description [23–30]. In other
words, the repulsive quantum potential (arising from the
uncertainty principle) that is inherent to the SPE leads to the
formation of a solitonic core that solves the cusp problem of
classical cold dark matter. This Bosonic model for dark
matter is known in the literature as fuzzy-dark matter,
ultralight axion dark matter, or Bose-Einstein condensate
dark matter.
Our aim, in this Letter, is to unveil a previously unrecog-

nized regime of the SPE. Considering a homogeneous
initial condition, we show that, by increasing the amount of
nonlinearity, the field evolves toward an incoherent local-
ized state that contains “hidden” coherent soliton struc-
tures. The incoherent structure (IS) “hides” coherent soliton
states in the following sense: (i) The soliton amplitude is of
the same order as the fluctuations of the surrounding IS;
(ii) The radius of the coherent soliton is larger than the
correlation radius of the fluctuations of the IS, but smaller
than the radius of the IS, see Eq. (3). Then, the coherent
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soliton state can hardly be identified in the usual spatial or
spectral domains, while its existence is clearly unveiled in
the phase-space representation. Our theory provides a
detailed description of the hidden coherent soliton states,
which remarkably reveals that they are trapped and stabi-
lized by the surrounding IS. Aside from the SPE context,
the hidden character of the solitons predicted here has not
been discussed before in the soliton literature.
There is a surge of interest in studying analog gravity

phenomena in optical laboratory-based experiments that
recreate some aspects of the full gravitational system
[31–36]. Gravity being inherently nonlinear and nonlocal,
the hidden coherent soliton states predicted here could
be observed in highly nonlocal nonlinear optics experi-
ments [37–46], or alternatively in dipolar Bose-Einstein
condensates [47].
Schrödinger-Poisson equation.—We consider a general

form of the SPE in spatial dimension D

i∂tψ ¼ −
α

2
∇2ψ þ Vψ ; ð1Þ

∇2V ¼ γηDjψ j2; ð2Þ

where α > 0 and γ > 0 are the dispersion and nonlinear
coefficients, with η1 ¼ 2, η2 ¼ 2π, η3 ¼ 4π. Accordingly,
V¼−γ

R
UDðx−yÞjψðyÞj2dy≡−γUD �jψ j2, with U1ðxÞ ¼

−jxj, U2ðxÞ ¼ − logðjxjÞ, U3ðxÞ ¼ 1=jxj. The SPE
describes a Bose gas under its self-induced gravitational
potential Vðx; tÞ satisfying the Poisson Eq. (2) with
α ¼ ℏ=m and γ ¼ Gm=ℏ, where m is the mass of the
bosons and G the Newton gravitational constant.
Hidden soliton regime.—If we denote by ρ̄ the typical

amplitude of jψ j2 and by l its typical radius, then V ∼ γρ̄l2

and the characteristic nonlinear time scale is τnl ¼
1=ðγρ̄l2Þ. On the other hand, the time scale due to linear
dispersion effects is τl ¼ λ2c=ðα=2Þ, where λc is the corre-
lation radius of the field ψ . The healing length

ξ ¼ l−1½α=ð2γρ̄Þ�1=2;

then denotes the spatial scale such that linear and nonlinear
effects are of the same order. The weakly nonlinear
(kinetic) regime λc≪ ξ (or τl=τnl¼ λ2c=ξ2≪1) is described
by the recently developed wave turbulence (WT) kinetic
theory [35,48]. This is not the regime addressed in this
Letter.
It proves convenient to normalize the healing length ξ̃ ¼

ξ=Λ with respect to the Jeans length Λ ¼ ½α=ð2γρ̄Þ�1=4,
which denotes the cut off spatial length below which a
homogeneous wave is modulationally stable. The dimen-
sionless parameter ξ̃ ¼ Λ=l ¼ ðξ=lÞ1=2 is directly related
to a parameter Ξ ¼ ðℏ=mÞ2=ð2l4ρ̄GÞ ¼ ξ̃4 that has been
shown to control the quantum to classical limit, i.e., the
Schrödinger-Poisson to Vlasov-Poisson correspondence in

the limit ℏ=m → 0 [27]. Indeed, for ξ̃≲ 1, the radius l of a
gravitational structure is of the same order as the healing
length ξ ∼ l, so that linear “quantum effects” play a
fundamental role and the system exhibits a coherent
dynamics that is essentially dominated by soliton struc-
tures. Massive numerical simulations in the cosmological
setting have widely explored this regime [22–30]: They
show the formation of an IS that is dominated in its center
by a large amplitude coherent soliton peak ρS, typically
much larger than the average density of the surrounding IS,
ρS ≫ ρ̄IS, see [28]. Furthermore, the soliton radius RS is
typically of the order of the correlation radius of the
fluctuations of the IS, RS ∼ λc [23–27,29,49].
On the other hand, in the strongly nonlinear regime

ξ̃ ≪ 1, the dynamics is dominated by the gravitational
interaction described by the Vlasov-Poisson equation
(VPE), which is a kinetic equation inherently unable to
describe coherent soliton structures. In other words, in the
regime ξ̃ ≪ 1 where α=γ ∝ ðℏ=mÞ2 → 0, coherent solitons
should gradually disappear and the field ψðx; tÞ should
exhibit a purely incoherent dynamics featured by the
generation of a large scale IS [27]. The main result in this
Letter is to show that such an IS is not purely incoherent,
but still contains hidden soliton states: The IS with typical
average density ρ̄IS, radius l, and correlation radius λc,
helps stabilizing a soliton of amplitude ρS and typical
radius RS verifying [50]

λc ∼ ξ ≪ RS ∼ Λ ≪ l; ρS ∼ ρ̄IS: ð3Þ

More precisely, RS ∼ Λ ¼ ffiffiffiffiffi
ξl

p
is the geometric average of

l and ξ. Note that the correlation radius is of the order
of the de Broglie wavelength, λc ∼ λdB, where λdB → 0 in
the quantum-to-classical (SPE to VPE) limit [27].
Simulations.—An example of the regime (3) is illus-

trated in Fig. 1. We consider SPE simulations in 1D
because the parameter ξ̃ (or Ξ) does not depend on the
spatial dimension D. The advantage with respect to 3D
simulations is that much smaller values of the parameter Ξ
can be reached in 1D. In Fig. 1, we consider Ξ ≃ 5 × 10−8,
a value that appears inaccessible in 3D, where Ξ > 10−4

[26,27,30]. In other words, the novel regime (3) seems out
of reach of current 3D simulations [27].
The initial condition in Fig. 1 is a homogeneous wave

ψðx; t ¼ 0Þ ¼ ffiffiffī
ρ

p
with a superimposed small noise to

initiate the modulational (gravitational) instability [54].
The instability is followed by a gravitational collapse,
which is regularized by the formation of a virialized IS [23–
29]. Note that the localized IS exhibits properties similar to
those of incoherent optical solitons in nonlocal nonlinear
media [39–41]. The IS in Fig. 1(a) does not exhibit
apparent coherent soliton structures (also, see Movie 1
in [50]). This appears consistent with the SPE to classical
VPE correspondence. Unexpectedly, however, the IS is not
purely incoherent, but contains hidden coherent soliton
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structures. Such soliton entities are unveiled by a phase-
space analysis of the field ψðxÞ provided by the Husimi
representation (smoothed Wigner transform) [27,50],
which denotes the field spectrum at different spatial
positions. In optics, the Husimi transform is provided by
the measurement of the spectrogram [55]. In phase space,
the solitons are characterized by high intensity spots,
while the surrounding small amplitude fluctuations denote
the IS, see Fig. 1. The coherent soliton has a spectral width
ΔkS much smaller than the spectral width of the IS,
ΔkIS ≫ ΔkS, which means that the radius of the soliton,
RS ∼ 2π=ΔkS, is much larger than the correlation radius
λc ∼ 2π=ΔkIS of the IS. Furthermore, remarking that
RS ≪ l, we can clearly observe the separation of spatial
scales (3) in Fig. 1(e).
The SPE simulations remarkably show that the hidden

solitons get trapped by the IS, as revealed by the phase-
space dynamics in Fig. 1. In particular, the untrapped
soliton labeled “5” in Fig. 1(b) is not robust and disappears
at t ≃ 27τ, see Movie 1 in [50]. Then, the IS plays the role
of an effective trapping potential for a soliton, as will be
confirmed by the theory, see Eq. (6). The solitons hidden
within the IS exhibit complex dynamics. Two solitons can
spin around each other in phase space, thus, forming a
binary system, see Fig. 2 and Movie 2 [50]. The number of

solitons decreases with time, eventually leading to a single
soliton that exhibits an ellipsoidal periodic motion in phase
space, see Fig. 3 and Movie 3 [50].
Effective Schrödinger-Poisson equation.—We develop

the theory in the general WT framework [4–8,39,56–61].
Because λc ∼ ξ [see Eq. (3)], the IS does not evolve in the
weakly nonlinear regime [50]. It will be described by a
WT-VPE that generalizes to long-range interactions [39],
the WTVlasov equation describing random waves in optics
[37,39], hydrodynamics [58,62], or plasmas [63–65].
We describe the coupled coherent-incoherent dynamics

of the soliton immersed in the IS by deriving a coupled
system of SPE and WT-VPE. The soliton is characterized
by a nonvanishing average hψi ≠ 0, so that the field
can be decomposed into a coherent component Aðx; tÞ

(c)(b)

(a)

112    <  t  < 116 112    <  t  < 116 

FIG. 2. Hidden binary soliton: (a) SPE simulation reported in
Fig. 1 (at longer time) showing two solitons that orbit around each
other in phase space. (b) The center of mass exhibits an
ellipsoidal motion with period τnumc:m: ≃ 1.56τ in agreement with
the theory, see Eq. (8) [the horizontal shift is due to the motion of
the IS, see Fig. 1(a)]. The dashed red line reports the theoretical
ellipse Hc:m: from Eq. (7). (c) The spinning period of the solitons
around each other τnumbin ≃ 1.43τ is in agreement with the theory,
see Eq. (10). The red line reports the theoretical prediction Ho
from Eq. (9). See Movie 2 in [50].

FIG. 3. Hidden single soliton: SPE simulation reported in Fig. 1
(at longer time) showing the phase-space evolution of a single
soliton. The soliton exhibits an ellipsoidal phase-space motion
with period τnumc:m: ≃ 1.52τ in agreement with the theory, see
Eq. (8). The white line reports the theoretical ellipse Hc:m:
predicted in Eq. (7). See Movie 3 in [50].

(c)(b)

(a)

1

2
3

4

5 1

23
4

ΔkIS ~ 2π/λc

RS

ΔkS

(e)

t = 14 t = 65

t = 241

(d) t = 241

FIG. 1. Unveiling coherent solitons in phase space: SPE
simulation for ξ̃ ≃ 1.5 × 10−2: (a) Spatiotemporal evolution of
the density jψ j2ðx; tÞ. (b)–(c)–(e) The hidden solitons are unveiled
in phase space by high intensity spots [labels (1)–(5)]. The
number of solitons decreases with time, eventually leading to a
single soliton (e). Density jψ j2ðxÞ (d) and corresponding phase-
space portrait (e) at t ¼ 241τ, showing the separation of the three
spatial scales λc ∼ 2π=ΔkIS ≪ RS ∼ 2π=ΔkS ≪ l, see Eq. (3).
Parameters: D ¼ 1 for x ∈ ½−L=2; L=2� with periodic boundary
conditions (L ¼ 135Λ, τ ¼ 2Λ2=α), see [50] and Movie 1.
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and an incoherent component ϕðx; tÞ of zero mean
(A ¼ hψi;ϕ ¼ ψ − hψi)

ψðx; tÞ ¼ Aðx; tÞ þ ϕðx; tÞ:

The local spectrum of the IS is the averageWigner transform
nðk; x; tÞ ¼ R hϕðxþ y=2; tÞϕ�ðx− y=2; tÞi expð−ik · yÞdy.
Starting from the SPE (1)–(2), we obtain the result that the
soliton and IS components are governed by the coupled SPE
and WT-VPE [50]

i∂tA ¼ −
α

2
∇2Aþ AV; ð4Þ

∂tnðk; xÞ þ αk · ∂xnðk; xÞ − ∂xV · ∂knðk; xÞ ¼ 0: ð5Þ

Equations (4) and (5) are coupled by the potential
Vðx; tÞ ¼ −γUD � ðjAj2 þ ρISÞ, which is the sum of the
coherent and incoherent contributions with ρISðx; tÞ ¼
< jϕðx; tÞj2 > ¼ ð2πÞ−D R

nðk; x; tÞdk the average density
of the IS.
Further insight into the coupled SPE and WT-VPE (4)–

(5) is obtained through a multiscale expansion in the
small parameter ε≡ ξ̃≪1: Aðx; tÞ ¼ Að0Þðx; tÞ, nðk; x; tÞ ¼
εDnð0Þðεk; εx; tÞ. This scaling gives Eq. (3): λc=Λ ¼ OðεÞ,
l=Λ ¼ Oðε−1Þ, RS=Λ¼Oð1Þ, ρS∼ jAj2∼Oð1Þ, n∼OðεDÞ,
and ρIS ∼Oð1Þ. Accordingly, we derive an effective SPE
(ESPE) for the coherent component [50]

i∂tA ¼ −
α

2
∇2Aþ VSAþ γqDρ0jxj2A; ð6Þ

where VSðx; tÞ ¼ −γUD � jAj2, ρ0ðtÞ ¼ ρISðx ¼ 0; tÞ is the
central average density of the IS, and qD depends on the
dimension, q1 ¼ 1; q2 ¼ π=2; q3 ¼ 2π=3. The ESPE (6)
reveals that the coherent (soliton) component experiences
its self-gravitational potential VS and an unexpected para-
bolic trapping potential due to the IS.
Dynamics of hidden solitons in D dimension.—We

describe the general form of the spinning binary soliton
by using the variational approach (for D ¼ 1, 3). We
consider the Lagrangian of the ESPE (6) with the
Gaussian ansatz

Aðx; tÞ ¼
X2
j¼1

ajðtÞ exp
�
−
jx − xo;jðtÞj2
2R2

S;jðtÞ
þ iΦjðx; tÞ

�
;

where Φjðx;tÞ¼ko;jðtÞ · ½x−xo;jðtÞ�þbjðtÞjx−xo;jðtÞj2þ
νjðtÞ. The evolution of the phase-space coordinates
of the jth soliton ½xo;jðtÞ; ko;jðtÞ� are obtained from
the principle of least action through the Euler-Lagrange
equations [50].
Ellipsoidal motion of the center of mass.—The dynamics

of the binary soliton can be decomposed into themotionof the
center of mass (c.m.) and the mutual relative displacement of

the two solitons in the c.m. reference frame. The equations
for the c.m., Xc:m:¼ðMS;1xo;1þMS;2xo;2Þ=ðMS;1þMS;2Þ,
and Kc:m: ¼ ðMS;1ko;1 þMS;2ko;2Þ=ðMS;1 þMS;2Þ, can be
recast in Hamiltonian form ∂tXc:m: ¼ ∂Kc:m:

Hc:m:, ∂tKc:m: ¼
−∂Xc:m:

Hc:m: with

Hc:m: ¼ qDγρ0jXc:m:j2 þ
α

2
jKc:m:j2: ð7Þ

The barycenter of the binary soliton then exhibits a periodic
ellipsoidal motion in phase space with a revolution period

τc:m: ¼
ffiffiffi
2

p
π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αγqDρ0

p
: ð8Þ

First, we comment the case D ¼ 1 through the SPE
simulation reported in Fig. 2: The average density ρ0 ¼
ð3.9� 0.2Þρ̄ gives τc:m: ¼ ð1.56� 0.04Þτ from (8), which
is in agreement with the simulation (τnumc:m: ≃ 1.56τ).
The revolution period (8) also applies to the ellipsoidal

motion of a single soliton where the c.m. coincides with
the soliton position. In Fig. 3, ρ0 ¼ ð4.2� 0.2Þρ̄ gives
τc:m: ¼ ð1.52� 0.04Þτ, which is in agreement with the SPE
simulation (τnumc:m: ≃ 1.52τ) [50].
For D ¼ 3, the dynamics Xc:m:ðtÞ lies in a plane

and exhibits an ellipsoidal motion: Xc:m:¼½RðθÞcosθ;
RðθÞsinθ;0� where RðθÞ¼ðw−cos2θþwþsin2θÞ−1=2c−1=41

with θðtÞ ¼ arctan½w− tanðco ffiffiffiffiffi
c1

p
tÞ�, c1 ¼ 2q3αγρ0=c2o,

w�, and co;1 being constants of the motion [50].
Revolution period for the binary soliton.—The

Hamiltonian equations governing the relative position of
the binary soliton, namely, Xo¼xo;1−xo;2, Ko¼ko;1−ko;2,
read ∂tXo ¼ ∂Ko

Ho, ∂tKo ¼ −∂Xo
Ho, with

Ho ¼ qDγρ0jXoj2 þ γðMS;1 þMS;2ÞjXoj2−D þ α

2
jKoj2:

ð9Þ

For D ¼ 1, the phase-space trajectory is reported in
Fig. 2. The spinning binary soliton exhibits a revolution
period [50]

τbin ¼ 4
ffiffiffi
2

p
arcsinð

ffiffiffiffiffiffiffiffi
β=2

p
Þ= ffiffiffiffiffiffiffiffiffiffi

αγρ0
p

; ð10Þ

where β¼1−ðMS;1þMS;2Þ= ffiffiffi
χ

p
, and χ¼ðMS;1þMS;2Þ2þ

4ρ0dðρ0dþMS;1þMS;2Þ, with d the maximal soliton dis-
tance. The spinning for the binary soliton is always faster
than for a single soliton (τbin < τc:m:), as confirmed by the
SPE simulation in Fig. 2 where τbin ¼ ð1.43� 0.04Þτ is in
agreement with the simulation (τnumbin ≃ 1.43τ).
For D ¼ 3, the motion of the binary soliton lies in a

plane: Xo¼½RðθÞcosθ;RðθÞsinθ;0�, where uðθÞ¼1=RðθÞ
is the solution of ∂2

θuþ u ¼ c1=u3 þ c2, where ∂tθ ¼
coRðθÞ−2, co;1;2 being constants of the motion. The orbit
Xo is not closed, in general, and the motion in the plane
exhibits a perihelion precession [50].
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Discussion and perspectives.—We have reported a novel
regime of the SPE characterized by hidden soliton states
that are trapped and stabilized by the IS. The regime of
hidden solitons can be observed in highly nonlocal non-
linear optics experiments with long-range thermal non-
linearities, in line with the recent emulations of rotating
Bose stars, or gravitational lensing and redshifts [32,33].
The hidden solitons can be experimentally unveiled
through the measurement of the optical spectro-
gram [50,55].
Aside from its relevance to bosonic models of fuzzy dark

matter, our work sheds new light on the quantum-to-
classical (or SPE to VPE) correspondence in the limit
ℏ=m → 0: The hidden solitons revealed here refer to the
latest residual quantum correction preceding the purely
classical limit provided by the VPE.
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