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We demonstrate a fundamental breakdown of the photonic spontaneous emission (SE) formula derived
from Fermi’s golden rule, in absorptive and amplifying media, where one assumes the SE rate scales with
the local photon density of states, an approach often used in more complex, semiclassical nanophotonics
simulations. Using a rigorous quantization of the macroscopic Maxwell equations in the presence of
arbitrary linear media, we derive a corrected Fermi’s golden rule and master equation for a quantum two-
level system (TLS) that yields a quantum pumping term and a modified decay rate that is net positive. We
show rigorous numerical results of the temporal dynamics of the TLS for an example of two coupled
microdisk resonators, forming a gain-loss medium, and demonstrate the clear failure of the commonly
adopted formulas based solely on the local density of states.
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Spontaneous emission (SE) of a two-level system (TLS)
has been a fundamental topic since the birth of quantum
electrodynamics [1–3] and is one of the standard metrics
for many applications in nanophotonic and nanoplasmonic
systems interacting with quantum emitters, such as mol-
ecules and quantum dots. Photonic engineering allows one
to modify the local density of states (LDOS) which, in turn,
leads to an enhancement or a suppression of the SE decay
rate [4,5], Γ, which is associated with the transition
probabilities with respect to a perturbation V̂, formalized
into Fermi’s golden rule (FGR).
In terms of a TLS quantum dipole interaction and the

photonic LDOS, the FGR in the photonics community is

ΓLDOSðraÞ ¼
2

ℏϵ0
d · Im½Gðra; ra;ωaÞ� · d�; ð1Þ

whereG is the photonic Green function at the position ra of
the TLS, with a dipole moment d ¼ hejd̂jgi ¼ dnd and
frequency ωa. From a quantum field theory, the SE rate is
also connected to the vacuum fluctuations (VF) [6] of the
quantized electric field (Ê), through

ΓVFðraÞ ¼
2π

ℏ2
d · h0j½Êðra;ωaÞ; Ê†ðra;ωaÞ�j0i · d�; ð2Þ

where j0i is the vacuum state. The interpretation of SE
decay, on a quantum level, is a consequence of radiation
reaction and vacuum fluctuations [6–9], which are identical
in the case of lossy media, where both simply depend on the
(projected) LDOS. Thus, in purely lossy environments, the
theory of SE decay can often be developed equally from a
classical treatment of light and matter through radiation

reaction terms from Poynting’s theorem [10], and from a
weak coupling limit of quantized light-matter interactions
through vacuum fluctuations and radiation reaction terms.
In the following, such approaches utilizing Eq. (1) for
calculating SE are denoted as LDOS-SE models.
Consequently, Eqs. (1) and (2) are commonly used as a

basis for calculating important figures of merit, such as the
Purcell factor and radiative β factor, even with gain
media [11–14]. Indeed, Purcell’s formula [15] is simply
a special case of Eqs. (1) and (2) for a single electro-
magnetic mode, aligned to the dipole and frequency of
the TLS.
In this Letter, we show that this common LDOS view of

SE [12–14,16,17] is, in general, incorrect, and present a
revision to the usual FGR for the SE decay of a point dipole
[correcting Eq. (1)], for the case of dielectric media with
amplifying regions. From a macroscopic quantum theory of
loss and gain, we derive the master equation of a TLS
interacting with its photonic environment in the weak
coupling limit, through a second-order Born-Markov
approximation, which gives rise to terms associated with
the pump (from the gain region) and the decay (from the
loss region) of the emitter. Using a coupled gain-loss
resonator structure, we show that, while the LDOS-SE
model leads to negative Purcell factors and nonphysical
temporal evolutions of the TLS, our scheme leads to a
positive Purcell factor with nonvanishing steady states. We
explain why the common assumption that the SE rate scales
with the LDOS fails, and show that the SE in such media
must be derived from a proper quantum model, taking
into account the ordering of the field operators that have
more significant consequences compared to the lossy
medium case.
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Theory.—We consider the general Hamiltonian
H ¼ Ha þHB þHI of a TLS interacting with the electro-
magnetic field in a lossy [8,18] and amplifying media [19],
with

Ha ¼ ℏωaσ
þσ−; ð3aÞ

HB ¼ ℏ
Z

dr
Z

∞

0

dω sgnðϵIÞωb†ðr;ωÞ · bðr;ωÞ; ð3bÞ

HI ¼ −
�
σþ

Z
∞

0

dωd · Êðra;ωÞ þ H:a:

�
; ð3cÞ

where the spatial integral is over all space, sgn is the sign
function, ϵI is the imaginary part of the permittivity, σ� are
the Pauli operators, and bð†Þðr;ωÞ are the bosonic annihi-
lation (creation) operators of the medium and the electro-
magnetic degrees of freedom. The medium-assisted electric
field operator Êðra;ωÞ fulfills the Helmholtz equation,
½∇ × ∇ × −ϵðr;ωÞω2=c2�Êðr;ωÞ ¼ iωμ0ĵNðr;ωÞ, where
ĵNðr;ωÞ is the current noise operator, which preserves
the fundamental QED commutation relation for arbitrary
media [20]. In the presence of lossy and amplifying media
[19], then, ĵNðr;ωÞ ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏϵ0jϵIðr;ωÞj=π

p ½ΘðϵIÞb̂ðr;ωÞþ
Θð−ϵIÞb̂†ðr;ωÞ�, where Θ½ϵI� (Θ½−ϵI�) is the Heaviside
function with respect to the spatial region, R3 − Vgain

(Vgain), with passive (active) dielectric permittivity
ϵIðr;ωÞ > 0 [ϵIðr;ωÞ < 0], cf. Fig. 1. The introduction
of a phenomenological noise operator in purely lossy (as
well as in lossy and amplifying) media is rigorously
justified using a microscopic oscillator model [21–23].
We also provide a short overview of the development of the
corresponding literature in the Supplemental Material [24].
The Helmholtz equation has the source-field solution

Êðr;ωÞ¼i
R
dsGðr;s;ωÞ· ĵNðs;ωÞ=ðωϵ0Þ, where Gðr; s;ωÞ

is the Green function of the medium, which satisfies
½∇×∇×−ϵðr;ωÞω2=c2�Gðr;s;ωÞ¼ω21δðr−sÞ=c2, with
suitable radiation boundary conditions. The macroscopic
Green function quantization is valid under strict linear
response of the electromagnetic field in the dielectric
medium [19] (cf. Ref. [24]).
Breakdown of the LDOS-SE rate.—To derive the correct

SE for amplifying media, we consider the time derivative of
the density operator hf; 1jρjf; 1i, with a final TLS state jfi
at time twith respect to an initial TLS state ji; 0i (jfi ≠ jii)
at time t0. Treating the interaction between the TLS and the
photons perturbatively up to the second order leads to FGR,
and we derive the transition rate from je; 0i to jg; 1i as
Γðe;0Þ→ðg;1Þ ≡ Γloss, where [24]

Γloss ¼ 2

ℏϵ0
d ·Kðra; ra;ωaÞ · d�; ð4Þ

where Kðr; r0Þ ¼ R
R3−Vgain

dsϵIðsÞGðr; sÞ ·G�ðs; r0Þ; nota-
bly, in the purely lossy case (Vgain → ∅), this leads to
the LDOS-SE formula, Eq. (1), through the Green
identity [18,20]

R
R3dsϵIðsÞGðr;sÞ ·G�ðs;r0Þ¼ Im½Gðr;r0Þ�.

Similarly, the transition rate from jg; 0i to je; 1i is obtained,
Γðg;0Þ→ðe;1Þ ≡ Γgain, where

ΓgainðraÞ ¼
2

ℏϵ0
d · Iðra; ra;ωaÞ · d�; ð5Þ

and Iðr; r0Þ ¼ R
Vgain

dsjϵIðsÞjGðr; sÞ ·G�ðs; r0Þ. Note that

ΓgainðraÞ ≥ 0, since jϵIj ≥ 0 and the integral can be recast
into a form

R jfj2 by using properties of the outer product
and the reciprocity theorem, Gðr; r0Þ ¼ GTðr0; rÞ. The
same holds true for Γloss.
First, we recognize that the form of ΓgainðraÞ and

ΓlossðraÞ is fundamentally different from the usually
assumed LDOS-SE formula in the photonics community;
however, we can relate them to Eq. (1), so that

ΓlossðraÞ ¼ ΓLDOSðraÞ þ ΓgainðraÞ; ð6Þ

and from Eqs. (1) and (4), we deduce that
ΓLDOS ¼ Γloss − Γgain, which implies that the sole use of
ΓLDOS is clearly inconsistent for SE with the rigorous
treatment of FGR in the presence of gain. Second, we can
investigate the contributions associated with vacuum fluc-
tuations. Inserting the source field expansion of the electric
field into Eq. (2), then ΓVF ¼ ΓLDOS [24], identical to the
results obtained from the commonly used FGR; however,
this is only because the more general commutator, instead
of the antinormal ordered operator expression, is used as
the basis for the quantum (vacuum) fluctuations, Eq. (2).
In fact, compared to the purely lossy case, the normal
ordered contribution to the electric field commutator,
h0jÊ†ðra;ωaÞÊðra;ωaÞj0i, does not vanish. In the rigorous

FIG. 1. Schematic of a quantum emitter (red dot) at position ra,
treated as a TLS and weakly interacting with an arbitrary
amplifying (ϵIðr;ωÞ < 0) and lossy (ϵIðr;ωÞ > 0) photonic
environment (grey areas). The emitter is pumped by the amplify-
ing medium with a rate Γgain and its free spontaneous decay Γ0 is
enhanced by Γloss=Γ0. The environment also induces a gain-loss
dependent photonic Lamb shift ΔLS.
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formulation of FGR, this term is precisely related to the
gain rate Γgain (cf. Ref. [24]). Thus, the LDOS is still related
to quantum (vacuum) fluctuations, but it is no longer
related to a physically relevant transition rate in the
presence of gain. From the spatial integral expressions
of Γgain and Γloss, one can clearly see that ΓLDOS, as a
difference between two positive definite forms, is, in
general, not positive definite.
Dynamical equations of TLS densities and optical

dephasing.—To obtain a more general description of the
TLS dynamics in the presence of gain, we use the density
matrix picture, starting with the Liouville-von Neumann
equation ∂tρ ¼ −i½H; ρ�=ℏ, where ρ is the total density
operator and H is the Hamiltonian from Eq. (3). Applying
the second-order Born-Markov approximation, we obtain
the reduced TLS master equation, whose projections on the
basis elements of the TLS subspace are [24]

∂tρ
ee
a ¼ −Γlossρeea þ Γgainρgga ; ∂tρ

gg
a ¼ −∂tρ

ee
a ; ð7aÞ

∂tρ
eg
a ¼ −i½ωa þ ΔLS�ρega − ½Γloss þ Γgain�ρega ; ð7bÞ

where ρa ¼ trBρ is the trace with respect to the
electromagnetic degrees of freedom, ρeea ¼ hejρajei
(ρgga ¼ hgjρajgi) is the excited (ground) state density, and
ρega ¼ hgjρajei is the dephasing with Lamb shift (LS)
ΔLS ¼ d · Re½Gðra; ra;ωaÞ� · d=ðℏϵ0Þ. Compared to the
LDOS-SE model, the ground state and excited state
densities are coupled through the loss and gain rate.
Moreover, the dephasing decays with Γloss þ Γgain rather
then Γloss − Γgain. Interestingly, the effective Lamb shift
ΔLS of the dephasing oscillation is identical to the purely
lossy case.
Consequently, we find three fundamental corrections to

common formulas in the current literature: (i) the rate
obtained from the LDOS-SE model is corrected by an
additional term þΓgain; (ii) a nonvanishing transition
process from the equilibrium ground state jg; 0i to the
excited states with one gain media excitations missing
je; 1gaini occurs; (iii) the gain and loss rate appear as
coupling constants in the dynamical equations of the TLS
densities, which is clearly missing in the usual models [11–
14,16], which associate all interaction processes as decay
terms. Thus, Eqs. (7a) and (7b) correct the perturbative
limit expression of a quantum emitter in the presence of
amplifying and lossy media.
It is also interesting to investigate the classical limit of

the underlying master equation of Eqs. (7a) and (7b). This
is achieved by treating the TLS as a (bosonic) harmonic
oscillator through ½σ−; σþ� → 1; then, the excited state
density evolves via [24] ∂tρ

ee
a ðtÞ ¼ −ΓLDOSρeea ðtÞ þ Γgain,

which is identical to the behavior of the LDOS-SE model
apart from the constant pumping term Γgain. However, this
assumption is only valid in the weak excitation limit, where
Γgain ≪ Γloss. Indeed, for any case where amplification

constitutes a significant part of the dielectric medium, the
classical limit of the TLS is violated, and the use of the
corrected quantum model is necessary.
Numerical results for coupled microdisk resonators.—

To explicitly demonstrate the impact and consequences of
the corrected formula for SE, now, we investigate the
Purcell enhancement and dynamics of a TLS in an
exemplary cavity-QED setup, where the quantum dipole
is placed in the gap between a lossy and an amplifying
resonator, as illustrated in Fig. 2 (left). Such resonators are
commonly used to explore the enhanced sensing capabil-
ities, lasing, and unidirectional transmission near excep-
tional points [35–40].
For calculating the quantum parameters appearing in

Eq. (7), the classical photon Green function must be
determined, which can be a tedious task for arbitrary
shaped scattering structures. However, it has been shown
that, for dipole positions ra and a reference position r near
or inside the cavity regions, the scattering part of the Green
function can be accurately represented by a quasinormal
mode (QNM) expansion of the form [41–45]

Gffðra; r;ωÞ ¼
X
μ

AμðωÞf̃μðraÞf̃μðrÞ; ð8Þ

where AμðωÞ ¼ ω=½2ðω̃μ − ωÞ� is the particular choice of
the spectral coefficient, ω̃μ are the QNM eigen-
frequencies, and f̃μðrÞ is the QNM eigenfunction, solving
½∇ × ∇ × −ϵðr; ω̃μÞω̃2

μ=c2�f̃μðrÞ ¼ 0 together with open
boundary conditions. Because of the choice of outgoing
radiation conditions, the QNM eigenfrequencies are com-
plex with ω̃μ ¼ ωμ − iγμ, where γμ is the HWHM of the
QNM resonance with center frequency ωμ. For γμ > 0, the
QNM eigenfunctions diverge as a further consequence of
the radiation conditions; however, since r ¼ ra appears in
the first part of Γloss, while r ∈ Vgain appears in Γgain, the
QNM expansion is well defined for calculating the decay
and pump rates of quantum emitters near cavity regions
(cf. Ref. [24]). For the coupled disk resonator system, two
hybridized QNMs μ ¼ þ;− appear in the optical frequency
regime, which stem from the coupling of the fundamental
modes of the isolated resonators [41]. Their respective field
distributions are shown in Fig. 2 (left), and they are used as
the basis for the expansion of Eq. (8).
Next, we can derive the Purcell factor FP, i.e., the

enhancement of the free-space emission rate Γ0 of the TLS
for the different models. Besides the LDOS-SE model,
where the Purcell factor is defined as FLDOS

P ¼ ΓLDOS=Γ0

[using Eq. (1)], and the rigorous FGR model, where
Floss
P ¼ Γloss=Γ0 [using Eq. (6)], one can additionally define

a Purcell factor from full numerical Maxwell-dipole cal-
culations through Poynting vector terms [41], which serves
as a further calculation, that is independent from any mode
expansion of the photon Green function. Here, FP ¼ P=P0
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and P ¼ H
S S · n is the power flow with the Poynting vector

S ¼ Re½E ×H�=2 projected onto the normal vector n of a
small spherical surface S enclosing a volume V, that
contains the dipole [this does not intersect with the
scattering structure, cf. Fig. 2 (left)]. Moreover, P0 repre-
sents the power flow of the dipole without any scattering
structures. Using Poynting’s theorem, P can be related to
classical energy loss P ¼ −

R
V Re½j� · E�=2, which is

proportional to the dipole-projected LDOS. Note that the
LDOS and classical Purcell factors for an isolated gain
resonator are negative, but gain on its own does not
constitute linear media.
The different model results as a function of TLS

frequency are shown in Fig. 2 (right). First, we note that
the Purcell factor of the isolated lossy resonator disk
(indicated by the grey dashed line) is roughly 1 order of
magnitude smaller compared to the enhancements of the
hybrid system, regardless of the model used. Second, and
most significantly, the full numerical Maxwell-dipole
solution as well as the result obtained from the LDOS-
SE model show a highly non-Lorentzian line shape, that
produces negative Purcell factors which are clearly unphys-
ical. Here, the gain-induced terms are taken into account as
negative contributions that compensate the loss. This
conceptional problem is commonly ignored or never
discussed in the literature, e.g., with exceptional points
connected to PT -symmetric systems [12,13,16]. Note that,
although we show negative LDOS values, the two-QNM
expansion is in excellent agreement with the full numerical
Maxwell-dipole solution (without any approximations).
Moreover, one should recognize that the power flow

can, indeed, be negative in this situation, since the reference
surface for calculating the enhancement does not enclose
the whole resonator-emitter system. In contrast to the
LDOS-SE model and the full numerical Maxwell-dipole
model, the results obtained from the corrected quantum
model are strictly positive.
Next, we discuss the consequences of these models on

the TLS population dynamics. We concentrate on three
critical TLS frequency points that are indicated by vertical
dashed lines in Fig. 2 (right): (i) ωa ¼ ωI, where ΓLDOS

reaches its maximum; (ii) ωa ¼ ωII, where Γloss reaches its
maximum (and ΓLDOS its minimum), and (iii) ωa ¼ ωIII,
where ΓLDOS ¼ 0. In the corrected quantum model, the
temporal evolution of the densities and the dephasing is
derived via Eqs. (7a) and (7b), while in the LDOS-SE
model, Γloss → ΓLDOS and Γgain → 0. The results are shown
in Fig. 3. In the case of ρað0Þ ¼ jgihgj (TLS in the
ground state initially), the corrected quantum model
predicts a nontrivial time evolution, where the TLS
occupation reaches a nonzero steady state with occupation
ρeea ðt → ∞Þ ¼ Γgain=½Γloss þ Γgain� after few decay proc-
esses (∼3tΓloss), which is independent on the initial state. In
contrast, the LDOS-SE model obviously predicts a trivial
time evolution, since both the dephasing and the
densities are proportional to the initial state. In the case
of ρað0Þ ¼ jeihej (TLS in the excited state initially), the
difference is even more pronounced: while the results from
the corrected quantum model again reveal nontrivial but
physical meaningful steady states, the LDOS-SE model
predicts unphysical solutions that can either lead to infinite,
constant, or vanishing excited state populations for t → ∞.

FIG. 2. Left: Schematic of a z-polarized emitter with dipole moment d placed between a lossy and amplifying microdisk resonator, as
well as the two hybridized QNMs (2D model, areas Again=loss with disk radius R ¼ 5 μm and gap distance dgap ¼ 1155 nm). The
dielectric constants of the resonators are ϵloss ¼ ð2þ 10−5iÞ2 and ϵgain ¼ ð2 − 5 × 10−6iÞ2, giving rise to nearly degenerate QNM
eigenfrequencies ℏω̃þ½eV� ¼ 0.833717 − 1.021253 × 10−6i and ℏω̃−½eV� ¼ 0.833716 − 1.038998 × 10−6i (cf. Ref. [41] for numerical
details on the QNM calculations). Right: Purcell factor of the emitter-cavity system as a function of TLS frequency shifted with respect
to real part of the QNM hybrid frequencies ω̃þ, showing results obtained from LDOS-SE model for the isolated lossy disk (grey dashed
curve) and hybrid structure (black curve), Eq. (1), the full numerical Maxwell-dipole solution (red circles), as well as the rigorous FGR
[magenta curve, Eq. (6)]. Additionally, the contribution of the pump from FGR is shown (blue curve).
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This is a consequence of the wrong interpretation of loss
and gain-induced rates. We note that, although the dynami-
cal equations (7a) and (7b) are formally similar to typically
laser rate equations with thermal excitation, the steady
states and interpretation of the gain sources is fundamen-
tally different; while in the case presented here, two
different reservoirs (gain and loss) are coupled to the
emitter, the pumping in the typical models comes through
a finite thermal photon number from a lossy environment.
To conclude, we have introduced a quantum dynamical

approach to rigorously account for gain and decay of a TLS
in linear dielectric media. In this formulation, the ampli-
fication enters the model through a reversed Lindblad term
in a master equation, which only involves positive quantum
rates. This is in complete contrast to the usual applied SE
models, where the LDOS can exhibit negative values,
explicitly shown for a coupled gain-loss resonator. This
not only leads to a fix of the usually adopted (LDOS) SE of
a TLS in an amplifying and absorptive environment, but
also implies a TLS pumping process through the gain
region; this is a consequence of the operator ordering,
manifesting in clear (and unique) quantum phenomena
from vacuum QED. These results also open up new
avenues into currently proposed quantum theories for
exceptional points and a PT -symmetric like system
[46,47] and future extensions of the theory toward strong
light-matter coupling. At a fundamental level, they also
show that SE enhancement is, indeed, a uniquely quantum
mechanical process that cannot always be described clas-
sically from Poynting’s theorem.
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