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24 rue Lhomond, 75231 Paris, France
2Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland

(Received 10 December 2020; revised 19 April 2021; accepted 24 May 2021; published 29 June 2021)

We propose a technique to control the macroscopic collective nuclear spin of a helium-3 gas in the
quantum regime using light. The scheme relies on metastability exchange collisions to mediate interactions
between optically accessible metastable states and the ground-state nuclear spin, giving rise to an effective
nuclear spin-light quantum nondemolition interaction of the Faraday form. Our technique enables
measurement-based quantum control of nuclear spins, such as the preparation of spin-squeezed states.
This, combined with the day-long coherence time of nuclear spin states in helium-3, opens the possibility
for a number of applications in quantum technology.
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Introduction.—The nuclear spin of helium-3 atoms in a
room-temperature gas is a very well isolated quantum
system featuring record-long coherence times of up to
several days [1]. It is nowadays used in a variety of
applications, such as magnetometry [2], gyroscopes for
navigation [3], as a target in particle physics experiments
[1], and even in medicine for magnetic resonance imaging
of the human respiratory system [4]. Moreover, helium-3
gas cells are used for precision measurements in funda-
mental physics, e.g., in the search for anomalous forces [5]
or violations of fundamental symmetries in nature [6].
While the exceptional isolation of helium-3 nuclear spins

is key to achieving long coherence times, it renders
measurement and control difficult. Remarkably, noble
gas nuclear spins can be polarized by metastability-
exchange or spin-exchange optical pumping, harnessing
collisions between atoms in different states or of different
species that transfer the optically induced electronic polar-
isation to the nuclei [1,7]. However, the role of quantum
coherence, quantum noise and many-body quantum corre-
lations in this process is only beginning to be studied [8–
11]. Optical quantum control of noble gas nuclear spin
ensembles is still in an early stage of development, and key
concepts of quantum technology such as the generation of
nonclassical states for quantum metrology [12] or the
storage of quantum states of light [13] have not yet been
demonstrated. Achieving such control is particularly rel-
evant for miniaturized room-temperature gas cell devices
[14,15], in which the atom number is smaller and the
relative importance of quantum noise is increased.
In this Letter we propose a technique for the optical

manipulation of helium-3 nuclear spins in the quantum
regime. As the nuclear spin state cannot be directly
manipulated with light, our approach makes use of

metastability exchange collisions tomap optically accessible
electronic states into the nuclear state, thereby mediating an
effective coupling between the light and the nuclear spin. In
contrast to earlier ideas put forward by one of us [8,9], the
scheme considered here results in a Faraday interaction [16]
coupling the fluctuations of the light and of the nuclear spin.
This interaction is nowadays routinely used as a powerful and
versatile spin-light quantum interface in experiments with
alkali vapors [16,17].
Related ideas are presently explored in noble gas-alkali

mixtures [10,11] where access to the nuclear spin relies on
spin-exchange collisions. This process strongly differs
microscopically from metastability exchange in He.
While spin exchange has an extremely small cross section
and is described by a Hamiltonian interaction where the
two spins rotate by a small angle around each other,
metastability exchange describes the incoherent swap of
the electronic state between a metastable and a ground state
He atom, which occurs with nearly unit probability in a
single collision [1]. As a consequence, the operating
conditions for the two processes imply orders of magnitude
difference in gas pressure and different temperatures. Our
scheme can operate at room temperature and millibar
pressures, as commonly used in helium-3 experiments.
Moreover, the interaction can be switched on and off by
switching the discharge that maintains a population in the
metastable state. The fact that metastability exchange,
incoherent at the microscopic level, can be harnessed to
enable measurement-based quantum control of the collec-
tive nuclear spin of the helium-3 gas on the macroscopic
level is indeed an interesting result of this work. It will
allow us to develop quantum-enhanced technologies with
helium-3, such as measurement devices with sensitivity
beyond the standard quantum limit [12].
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Semiclassical three-mode model.—We consider the
setup in Fig. 1, where a gas cell containing Ncell helium-
3 atoms in the ground state and a small fraction ncell ∼
10−6Ncell in the metastable state is placed inside an optical
cavity. In the theoretical treatment we assume that the
metastable atoms are homogeneously illuminated by the
cavity mode and the magnetic field is zero. Effects of a
small guiding field and the spatial profile of the cavity
mode will be discussed at the end of the Letter. The relevant
level scheme is illustrated in Fig. 2. We introduce the
collective spin operators I⃗ and K⃗ for the (nuclear) ground

state and for the F ¼ 1=2 metastable manifold, respec-
tively. For the cavity light, propagating in the z direction
and addressing the 23S1 − 23P0 C8 transition at 1083 nm,
we introduce the Stokes spin operators as a function of the
x- and y-polarized modes as Sx ¼ ðc†xcx − c†ycyÞ=2, Sy ¼
ðc†xcy þ c†ycxÞ=2 and Sz ¼ ðc†xcy − c†ycxÞ=ð2iÞ. For a large
detuning Δ and in the low-saturation limit, the excited state
23P0 can be adiabatically eliminated, resulting in the
Faraday interaction Hamiltonian [16]

H ¼ ℏχKzSz ð1Þ

with coupling strength χ ¼ g2c=Δ. Here, gc ¼ d8Ec=ℏ and
Ec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏω=2ϵ0Vc

p
, where Vc is the cavity mode volume, ω

the angular frequency, and d8 the dipole matrix element of
the chosen transition.
The coupling between K⃗ and I⃗ is provided by metasta-

bility exchange collisions, occurring at rate 1=τ for a
metastable atom, and 1=T for a ground state atom, with
T=τ ¼ Ncell=ncell [18]. Metastability exchange collisions
can be thought of as an instantaneous exchange of the
electronic excitation between a ground state and a meta-
stable atom that leaves nuclear and electronic spins
individually unchanged. They are routinely used to transfer
orientation between the metastable and the nuclear spins
and, as it was shown theoretically, they can also transfer
quantum correlations [8,9]. Starting from metastability
exchange equations for the metastable and nuclear varia-
bles [18] plus the Faraday interaction (1) between K⃗ and S⃗,
we write a set of nonlinear equations for the mean values of
the collective operators that describe the system dynamics
in the semiclassical approximation, i.e., neglecting quan-
tum fluctuations and correlations [19]. For x-polarized
nuclear and light spins

hIxis ¼ P
Ncell

2
≡ N

2
and hSxis ¼

nph
2

; ð2Þ

where P ∈ ½0; 1� is the nuclear polarisation and nph the
number of photons in the cx cavity mode in steady state
without atoms, the nonlinear equations of motion admit a
stationary solution. In particular, we find

hKxis ¼ P
�
1 − P2

3þ P2

�
ncell
2

≡ n
2
: ð3Þ

The nonlinear equations of motion can now be linearized
around this stationary solution by setting hAi ¼ hAis þ δA,
with A a collective operator and δA a classical fluctuation.
By performing an adiabatic elimination of the F ¼ 3=2
metastable manifold, we obtain the reduced set of coupled
differential equations for the classical fluctuations of the
transverse components of three spins

FIG. 1. Illustration of the proposed setup. A helium-3 gas cell is
placed inside an asymmetric optical cavity, ensuring that photons
leave the cavity at rate κ predominantly through the out-coupling
mirror. A (switchable) discharge maintains a small fraction of the
atoms in a metastable state. The atomic metastable and nuclear
spins are oriented in the x direction beforehand by optical
pumping. The light polarization, initially along x, is rotated by
an angle φ due to the Faraday effect, performing a quantum
nondemolition measurement of the nuclear spin fluctuations
along the light propagation direction. This polarization rotation
is continuously monitored via homodyne measurement.

FIG. 2. Relevant level scheme of 3He for z quantization axis,
which corresponds to the cavity axis. The cavity mode (red)
addresses the C8 transition between the F ¼ 1=2 metastable
manifold and the F ¼ 1=2 excited state 23P0, with detuning Δ.
The six metastable levels 23S1 are coupled to the purely nuclear
11S0 ground state by metastability exchange collisions.
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_δSz ¼ −
κ

2
δSz; ð4aÞ

_δSy ¼ −
κ

2
δSy þ χhSxisδKz; ð4bÞ

_δIz ¼ −γfδIz þ γmδKz; ð4cÞ

_δIy ¼ −γfδIy þ γmδKy; ð4dÞ

_δKz ¼ −γmδKz þ γfδIz; ð4eÞ

_δKy ¼ −γmδKy þ γfδIy þ χhKxisδSz: ð4fÞ

Here, the decay rate and the effective metastability
exchange rates for the ground state and metastable atoms
are γf ¼ ð4þ P2Þ=ð8 − P2Þð1 − P2Þ=ð3þ P2Þ 1

T and γm¼
ð4þP2=8−P2Þ1τ, respectively. Note that γm=γf ¼ N=n ≫ 1.
We proceed now with a full quantum treatment of the

reduced system of three collective spins.
Quantum three-mode model.—Since S⃗, K⃗, and I⃗ are x

polarized and will maintain a large polarization throughout
the entire protocol, we can perform the Holstein-Primakoff
approximation by replacing Iy=

ffiffiffiffi
N

p
≃ Xa, Iz=

ffiffiffiffi
N

p
≃ Pa,

Ky=
ffiffiffi
n

p
≃ Xb, Kz=

ffiffiffi
n

p
≃ Pb, Sy=

ffiffiffiffiffiffiffinph
p ≃ Xc, and

Sz=
ffiffiffiffiffiffiffinph

p ≃Pc, where we have introduced the bosonic
quadratures Xν¼ðνþν†Þ=2, Pν¼ðν−ν†Þ=ð2iÞ, ½Xν;Pν� ¼
i=2 for ν ¼ a, b, c, that describe the transverse fluctuations
of the collective spins. Note that within the Primakoff
approximation the mode c ≃ cy is associated to the y-
polarized photons inside the cavity. The Faraday
Hamiltonian (1) becomes

H ¼ ℏΩPbPc; ð5Þ

with Ω ¼ χ
ffiffiffiffiffiffiffiffiffinnph

p . In a fully quantum treatment [8], one
adds appropriate Langevin forces representing quantum
noise to the semiclassical equations (4). To this approach
however, we prefer here an equivalent formulation in terms
of a quantum master equation (QME) for the density
operator ρ describing the three bosonic modes a (nuclear),
b (metastable) and c (cavity),

_ρ ¼ 1

iℏ
½H; ρ� þ

X
w¼c;m

CwρC
†
w −

1

2
fC†

wCw; ρg: ð6Þ

Besides the interaction Hamiltonian Eq. (5), it includes jump
operators for the cavity losses Cc ¼

ffiffiffi
κ

p
c and for metasta-

bility exchange collisions Cm ¼ −
ffiffiffiffiffiffiffiffi
2γm

p
bþ ffiffiffiffiffiffiffi

2γf
p

a.
Initially, the three modes are in the vacuum state. Because
of the Faraday effect caused by quantum fluctuations of the
spin, the polarization of the light is slightly turned and, after a
transient time of order 1=κ, the number of y-polarized
photons in the cavity reaches the steady state

hc†ciðtÞ →
�
Ω
2κ

�
2
�
1 −

2γm
κ þ 2ðγm þ γfÞ

�
: ð7Þ

The metastability exchange collisions lead to a hybridi-
zation of the nuclear spin and metastable modes. Their
contribution to the three-mode QME is diagonalised
introducing the rotated basis

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γm
γm þ γf

r
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γf

γm þ γf

r
b; ð8Þ

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γm
γm þ γf

r
b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γf

γm þ γf

r
a: ð9Þ

In practice, as γm ≫ γf, α ≈ a and β ≈ b. In the rotated
basis, the system can be reduced to a one-mode model.
Reduction to a one-mode model.—We consider the

regime κ ≫ γm ≫ γf, all being larger than the timescale
of the nuclear spin evolution. During the evolution, the
number of excitations in the “hybridized nuclear” mode α
grows linearly in time, while the “hybridized metastable”
mode β as well as the cavity mode c will rapidly tend to a
stationary value, allowing their adiabatic elimination.
Following a similar procedure as in Ref. [20] within the

Monte Carlowave function description, we obtain to leading
order in the couplingΩ a one-modeQMEdescribing the slow
evolution of the hybridized nuclear mode α [19]

_ρα ¼
X
w¼s;d

�
CwρC

†
w −

1

2
fC†

wCw; ρg
�
: ð10Þ

This QME involves two jump operators, Cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2=4κ

p
I

with I the identity, and Cs ¼
ffiffiffiffiffiffi
Γsq

p
Pα with

Γsq ¼
Ω2

κ

γf
γm

: ð11Þ

It appears from the adiabatic elimination thatCd is related to
“double jumps,” where a photon and a metastable excitation
are annihilated at the same time. This process does not affect
the nuclear state vector and it does not play any role in the
homodyne-measurement squeezing scheme we consider
[21]. On the contrary, we will see that Cs, related to single
cavity jumps, is responsible for thegeneration of nuclear spin
squeezing at rateΓsq. Equations (10), (11) are one of themain
results of our work. The factor γf=γm ¼ n=N in Eq. (11),
absent in the squeezing rates obtained for alkali atoms using
Faraday interactions, reflects the fact that we optically
address n metastable atoms to manipulate N nuclear spins.
Quantum nondemolition measurement of the nuclear

spin.—We now study the evolution of the system in a single
experimental realisation, conditioned on the result of a
continuous homodyne measurement performed on the
small y-polarized field leaking out of the cavity, the local
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oscillator phase being chosen to measure Xc [23]. This is
described at the level of the QME by appropriate jump
operators. A density matrix conditioned on the measure-
ment can be reconstructed in the Monte Carlo wave
function method by averaging over stochastic realizations
with different histories for metastability exchange colli-
sions but the same history for the homodyne detection. In
the limit of a local oscillator with large amplitude, the
evolution of the Monte Carlo wave function can be
approximated by a nonlinear continuous stochastic evolu-
tion [24,25]. We apply this approach to both the one-mode
model and the three-mode model.
In the case of the one-mode model Eq. (10), the

corresponding stochastic evolution reads [19]

djϕðtÞi ¼ −
dt
2
ΓsqQ2jϕðtÞi þ ffiffiffiffiffiffiffi

Γsq

p
dζsQjϕðtÞi; ð12Þ

where Q≡ Pα − hϕjPαjϕi and dζs is a real Gaussian
random noise of zero mean and variance dt. The stochastic
equation (12) describes the evolution of the quantum state
of the nuclear spin in a single realization of the experiment.
The deterministic term proportional to Γsqdt and the
random noise proportional to

ffiffiffiffiffiffiffi
Γsq

p
dζs are issued from

the jump operator Cs in the original one mode QME (10)
and are physically associated to the measurement process
on the nuclear spin [26–28]. For our initial conditions, the
time evolution described by Eq. (12) can be solved
analytically. For a single realization ϕðtÞ of the stochastic
evolution, corresponding to a particular history of homo-
dyne detection, we find that for long times the average

hPαiϕ ≡ hϕjPαjϕi stabilizes to a (random) constant value,
and the variance VarϕðPαÞ tends to zero as ðΓsqtÞ−1. Going
back to the original three-mode basis, the single realization
variance of the nuclear spin quadrature Pa corresponding to
Iz reads

VarϕðPaÞðtÞ ¼
1

4

1þ γf
γm
Γsqt

1þ Γsqt
; ð13Þ

and the time average of the homodyne signal is propor-
tional to the fixed (random) value of hPaiϕ of that
realization

hcþ c†iϕ !t→∞
2

ffiffiffiffiffiffiffi
Γsq

κ

r
hPaiϕ: ð14Þ

Note that VarϕðPaÞðtÞ tends to γf=ð4γmÞ in the t → ∞
limit, which is the theoretical spin squeezing limit intrinsic
to this method that uses the metastable state to mediate the
interaction. In Figs. 3(b)–3(c) we compare the analytical
predictions (14) and (13) with the numerical solution of the
three-mode model.
We note that the limit γf=γm → 0 of Eq. (13) coincides

with the result that one would obtain from a nuclear spin-
light interaction of the quantum nondemolition or Faraday
form [29]

Heff ¼ ℏΩ
ffiffiffiffi
n
N

r
PaPc or Heff ¼ ℏχ

n
N
IzSz: ð15Þ

(a) (b)
(c) (d)

FIG. 3. (a) Time evolution of the homodyne signal hcþ c†iϕ (blue) and of the nuclear spin quadrature 2
ffiffiffiffiffiffiffiffiffiffiffi
Γsq=κ

p hPaiϕ (orange) in a
single realization of the experiment where a continuous homodyne measurement of the y-polarized field leaking out of the cavity is
performed. (b) Time average of the same quantities. The curves are obtained from the continuous stochastic equation derived from the
three-mode QME (6), for a single realization of the stochastic noise describing homodyne detection (the equivalent of dζs of the one-
mode model) and averaged over 5 realization of the stochastic noise describing metastability exchange. Parameters: Ω=κ ¼ 1=10,
γm=κ ¼ 1=10, γf=κ ¼ 1=100, Γsq=κ ¼ 1=1000. (c) Conditional variance of the nuclear spin quadrature Pa as a function of time. Black:
three-mode model with same parameters as (a), Green: analytical prediction (13) of the one-mode model. (d) Effect of decoherence.
Black: three-mode model with an additional relaxation rate γ0=κ ¼ 1=1000 in the metastable state, where we now average over 8
realizations of the stochastic noises related to metastability exchange and wall relaxation in the metastable state. Green: one-mode model
with the corresponding effective relaxation in the ground state γ00 ¼ Γsq=10. Dashed horizontal line: analytical prediction (16).
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Effect of decoherence.—Because of the long coherence
time of the nuclear spin, we can ignore its decoherence on
the timescale of squeezing generation. On the other hand,
decoherence in the metastable state, including spontanous
emission and collisions with the cell walls, will affect the
performance of the squeezing protocol. From analytical
calculations we can show that a relaxation with rate γ0 in
the metastable state appears in the ground state as an
effective relaxation with reduced rate γ00 ¼ γ0ðγf=γmÞ. We
thus expect the effect of metastable relaxation to become
negligible for Γsq ≫ γ00. By inserting this effective relax-
ation in the one-mode model (10), we calculated the
squeezing limit in a single realization in the presence of
metastable decoherence for γm ≫ γf and Γsq ≫ γ00,

VarϕðPaÞ !t→∞ 1

4

ffiffiffiffiffiffiffi
γ00
Γsq

s
and VarϕðXaÞ !t→∞ 1

4

ffiffiffiffiffiffiffi
Γsq

γ00

s
: ð16Þ

This kind of scaling, already found for alkali atoms [31], is
further confirmed by our numerical simulations where we
introduce an additional jump operator

ffiffiffiffiffi
γ0

p
b in the three-

mode QME (6); see Fig. 3(d). An extended theoretical
treatment can be found in Ref. [19].
Experimental proposal.—We consider a cylindrical vapor

cell 20 mm long and 5 mm in diameter, filled with Ncell ¼
2.5 × 1016 3He atoms at a pressure of p ¼ 2 Torr. For a
polarization of P ¼ 0.4 this gives an effective number of
ground state atoms N ¼ 1.0 × 1016. We take ncell=Ncell ¼
5 × 10−6, giving an effective number of metastable atoms
n ¼ 1.3 × 1010. From the metastability exchange rate coef-
ficient [1], we determine effective metastability exchange
rates γm ¼ 5.2 × 106 and γf ¼ 7.0 s−1. The cell is placed
inside an optical cavity to enhance the atom-light interaction
[17]. For a finesse ofF ¼ 50 and a cavity length of 3 cm,we
obtain κ ¼ 2π 1.0 × 108 Hz. The cavity is laser driven on the
x-polarization mode so that 5 mW of light exit the cavity in
this polarization, and we take the light to be detuned byΔ ¼
2π 2.0 GHz from the C8 transition, larger than the Doppler
width so that all atoms participate in the off-resonant Faraday
interaction. This results in Ω ¼ 2π 4.1 × 106 Hz. In steady
state, 6.5 × 105 s−1 y-polarized photons leave the cavity,
Eq. (7). The nuclear spin squeezing rate is evaluated from
Eq. (11) to Γsq ¼ 1.4 s−1. Squeezed nuclear spin states can
thus be prepared within a few seconds in pure helium-3 cells
at room temperature and pressures of a few mbar, while they
live for hours when the discharge is switched off [32].
We have assumed that the diffusive atomic motion

averages over different velocities and spatial inhomogene-
ities of the cavity mode, effectively coupling the light
homogeneously to all atoms in the cell [33]. From the
diffusion coefficient of metastable atoms [34], we estimate
the metastable relaxation rate due to wall collisions to be
γwall0 ¼ 2.6 × 104 s−1 [35]. The off-resonant photon scatter-
ing rate in the metastable state, averaged over the cell, is

γscat0 ≈ 2.4 × 103 s−1 ≪ γwall0 . According to Eq. (16), the
squeezing limit for these parameters is −8 dB. We note that
the squeezing limit imposed by photon scattering is the
same as for alkali atoms, since the factor n=N appears both
in the effective coupling (15) and in the effective nuclear
spin decoherence rate γ00 in terms of the metastable
decoherence rate γ0. For such squeezing levels, we estimate
that the Larmor precession over the duration t ∼ 10 s of the
experiment is negligible in guiding fields up to 10−7 G
[36]. For larger guiding fields up to 10 mG, strobo-
scopic measurements can be used to evade quantum
backaction [17].
Conclusions.—In this work we proposed a technique for

the optical manipulation of the 3He collective nuclear spin
in the quantum regime. In particular, we have shown that
QND measurement techniques previously developed for
alkali atoms can be generalized to this system, giving
access to a measurement-based preparation of nonclassical
nuclear spin states, and thus constituting a fundamental
building block for helium-spin-based quantum technolo-
gies. Concrete examples that are realistic for the future
include measurement devices with a sensitivity beyond the
classical limit and quantum memories for light with ultra-
long (several days) storage times.
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