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We present an analytic computation of the two-loop QCD corrections to ud̄ → Wþbb̄ for an on-shellW
boson using the leading color and massless bottom quark approximations. We perform an integration-by-
parts reduction of the unpolarized squared matrix element using finite field reconstruction techniques and
identify an independent basis of special functions that allows an analytic subtraction of the infrared and
ultraviolet poles. This basis is valid for all planar topologies for five-particle scattering with an off-shell leg.
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Introduction.—The production of a W boson in associ-
ation with a pair of b quarks at hadron colliders is of
fundamental importance as a background to Higgs pro-
duction in association with a vector boson. The process is
one of a prioritized list of 2 → 3 scattering problems for
which higher-order corrections are necessary to keep theory
in line with data. These amplitudes are related to a large
class of processes contributing to pp → W þ 2j produc-
tion, and the work presented in this Letter represents a
significant step toward achieving a complete classification
of the missing two-loop amplitudes.
The process has been studied extensively at next-to-

leading order (NLO) [1–5] and was the first in a set of off-
shell five-particle amplitudes to be studied using the
unitarity method [6,7]. The present state of the art in
phenomenological studies allows full mass effects, shower
matching, electroweak corrections, and the inclusion of
additional QCD jets [8–10].
A numerical computation of the two-loop helicity

amplitudes [11] demonstrated the importance of an efficient
analytic form with a well-understood basis of special
functions. Major steps forward came via efficient numerical
evaluation of the differential equations [12] and analytic
evaluation in terms the Goncharov polylogarithms (GPLs)
[13,14]. These results opened the door to a fully analytic
amplitude computation, yet significant challenges remain.
The complexity of the external kinematics represents a
challenge for integral reduction techniques, and the iden-
tification of a minimal basis of special functions is required
to find analytic simplifications after subtracting universal
infrared and ultraviolet divergences.

Efficient amplitude and integration-by-parts (IBP) reduc-
tion [15,16] using finite field arithmetic [17–27] has gained
significant interest in recent years. Through multiple
evaluations of a numerical algorithm [28–31], fully analytic
forms for planar massless five-particle amplitudes have
been extracted using a rational parametrization of the
kinematics [32]. Following a complete understanding of
a pentagon function basis [33,34], a large number of two-
loop amplitudes are now available in compact analytic form
[35–47]. We have also seen the first phenomenological
predictions at NNLO in QCD for the production of three
photons in hadron colliders after combination with real-
virtual and double real radiation [48,49].
In this Letter we outline the extension of this method to

processes with an additional mass scale.
Leading color ud̄ → Wþbb̄ amplitudes.—The leading

order process consists of two simple Feynman diagrams as
shown in Fig. 1. We label our process as follows:

d̄ðp1Þ þ uðp2Þ → bðp3Þ þ b̄ðp4Þ þWþðp5Þ; ð1Þ

where p2
1 ¼ p2

2 ¼ p2
3 ¼ p2

4 ¼ 0 and p2
5 ¼ m2

W . The color
decomposition at leading color is

AðLÞð1d̄; 2u; 3b; 4b̄; 5WÞ
¼ nLg2sgWδ

ī4
i1
δī2i3A
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FIG. 1. Leading order Feynman diagrams contributing to
ud̄ → Wþbb̄.
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where n ¼ mϵNcαs=ð4πÞ; αs ¼ g2s=ð4πÞ, and mϵ ¼
ið4πÞϵe−ϵγE . gs and gW are the strong and weak coupling
constants, respectively.
We interfere the L-loop partial amplitudes AðLÞ in Eq. (2)

with the tree-level partial amplitude Að0Þ to obtain the
unrenormalized L-loop unpolarized squared partial
amplitude,

MðLÞ ¼
X
spin

Að0Þ�AðLÞ: ð3Þ

After the interference with the tree-level amplitude the
analytic expression can be written in terms of scalar
invariants,

s12 ¼ ðp1þp2Þ2; s23 ¼ ðp2−p3Þ2; s34 ¼ ðp3þp4Þ2;
s45 ¼ ðp4þp5Þ2; s15 ¼ ðp1−p5Þ2; s5 ¼ p2

5; ð4Þ

and a parity-odd quantity, tr5 ¼ 4iϵμνρσp
μ
1p

ν
2p

ρ
3p

σ
4. Our

results are the so-called finite remainders FðLÞ, obtained
after subtraction of infrared and ultraviolet divergences,
FðLÞ ¼ MðLÞ − PðLÞ, where PðLÞ takes the well-known form
[50–53]. The explicit form for our process using the same
conventions can be found in Ref. [11].
Amplitude reduction.—Feynman diagrams for the ud̄ →

Wþbb̄ scattering are generated using QGRAF [54]. In the
leading color approximation, there are 2, 16, and 210
diagrams contributing to the tree-level, 1-loop, and 2-loop
amplitudes, respectively. Example 2-loop diagrams are
shown in Fig. 2. On interference of the L-loop partial
amplitude AðLÞ with the tree-level partial amplitude Að0Þ
according to Eq. (3), the squared partial amplitude can be
written as

MðLÞðfpgÞ¼
Z YL

i¼1

ddki
iπd=2e−ϵγE

X
T

NTðd;fkg;fpgÞQ
α∈TDαðfkg;fpgÞ

; ð5Þ

where p are the external momenta that live in four
dimensions, and ki are the loop momenta. We work in
the conventional dimensional regularization (CDR)
scheme, where we have d ¼ 4 − 2ϵ dimensions.
The W-boson polarization sum is performed in the

unitary gauge,

i
X
λ

εμ�W ðp5; λÞενWðp5; λÞ ¼ −gμν þ pμ
5p

ν
5

m2
W

: ð6Þ

The terms containing traces with a single γ5 are treated
using Larin’s prescription [55], while those with two γ5’s
are treated using the anticommuting γ5 prescription. Larin’s
prescription has been employed in a wide variety of
multiloop computations and a detailed discussion can be
found, for example, in Ref. [56]. We have checked that
using Larin’s scheme throughout gives the same results for
FðLÞ. We can then split the squared partial amplitude into
parity-even and parity-odd parts,

MðLÞðfpgÞ ¼ MðLÞ
evenðfpgÞ þ tr5M

ðLÞ
oddðfpgÞ: ð7Þ

MðLÞ
even receives contribution from the terms with no or two

γ5’s while tr5M
ðLÞ
odd is made up of terms with a single γ5. We

note that the parity-odd part vanishes at tree level,Mð0Þ
odd ¼ 0.

To perform the reduction of the 2-loop amplitude onto a
basis ofmaster integralswe firstmap each topologyT to a set
of 15 maximal cut or master topologies as shown in Fig. 3.
Themaster topologies are then definedwith a spanning set of
11 propagators and, after tracking shifts in the loop
momentum, the change of variables for each topology T
can be computed. The resulting squared partial amplitude is
now written as a linear combination of scalar integrals I

Mð2Þ
k ðfpgÞ ¼

X
i

ck;iðϵ; fpgÞIk;iðϵ; fpgÞ; ð8Þ

where k ∈ feven; oddg. Analytic forms of the unreduced
squaredmatrix elements above are derived using a collection
of FORM [57,58] and Mathematica routines. The integrals
appearing in Eq. (8) are not all independent. Relations
between integralsI can be foundusing IBP identities and the
squared amplitude can bewritten in terms of an independent
set of master integrals as follows:

Mð2Þ
k ðfpgÞ ¼

X
i

dk;iðϵ; fpgÞMIiðϵ; fpgÞ: ð9Þ

The reduction to master integral basis is then performed

within the FiniteFlow framework [23], separately forMð2Þ
even and

Mð2Þ
odd. We use LiteRed [59] to generate the IBP relations in

FIG. 2. Sample Feynman diagrams in the leading color two-
loop ud̄ → Wþbb̄ amplitude. FIG. 3. Topologies with maximum number of propagators.

PHYSICAL REVIEW LETTERS 127, 012001 (2021)

012001-2



Mathematica, together with the Laporta algorithm [60] to
solve them numerically over finite fields. We note that only
master topologies T1 − T10 are included in the IBP system
because the integrals belonging to master topologies T11 −
T15 can be mapped onto master topologies T6 − T10. The
procedure for performing the reduction ontomaster integrals
using IBP relations is of course extremely well known; the
challenge in this example is one of enormous algebraic
complexity. By encoding the problem within a numeric
sampling modular arithmetic we are able to efficiently solve
the Laporta system with tensor integral ranks of up to 5,
avoiding all large intermediate expressions. For planar
topologies such as the ones appearing here the application
of syzygy relations [61–63] to optimize the IBP reduction
would likely lead to a substantial speed-up in computation
time, although in our case it was not found to be necessary.
We did not perform an analytic reconstruction after com-
pleting the set-up of the reduction in FiniteFlow graphs. Instead
we continued to map the amplitude onto a basis of special
functions.
A basis of special functions for the finite remainder.—

There are 202 master integrals contributing to the ampli-
tude; 196 of them are covered by the 3 independent
pentabox master integral topologies, while 6 are of one-
loop squared type that involve one-loop massive on-shell
bubble integral. We choose the canonical bases of master
integrals constructed in Ref. [12]. They satisfy differential
equations (DEs) [64–67] in the canonical form [68],

dMI
�! ¼ ϵ

X58

i¼1

aid logwiMI
�!

; ð10Þ

where MI
�!

is the set of canonical master integrals for any of
the involved topologies, the ai are constant rational
matrices, while fwig58i¼1 is a set of algebraic functions
of the external kinematics called letters (see Ref. [12] for
their definition). The alphabet, i.e., the set of all letters, is
the same for all planar one-mass five-particle integrals up
to two loops, whereas the constant matrices ai depend on
the topology. In Ref. [12], the authors also discuss a
strategy to evaluate the master integrals numerically, based
on the solution of the DEs (10) in terms of generalized
power series [69]. More recently, analytic expressions of
the canonical master integrals in terms of GPLs [70–72]
have become available [13,14]. Both approaches allow
for the numerical evaluation of the master integrals
in any kinematic region and with arbitrary precision.
Both approaches, however, also share certain drawbacks.
Whether we reconstruct the prefactors of the ϵ-components
of the master integrals in Eq. (9) or map the latter onto
monomials of GPLs, we cannot subtract the infrared and
ultraviolet poles analytically and reconstruct directly the
finite remainder.
We overcome these issues by constructing a basis out of

the ϵ-components of the canonical master integrals up to

order ϵ4. The crucial tool we employ in this construction are
Chen’s iterated integrals [73]. We can define them iter-
atively through

d½wi1 ;…; win �s0ðsÞ ¼ d logwin ½wi1 ;…; win−1 �s0ðsÞ;
½wi1 ;…; win �s0ðs0Þ ¼ 0; ð11Þ

where s denotes cumulatively the kinematic invariants, s0 is
an arbitrary boundary point, and the iteration starts from
½�s0ðsÞ ¼ 1. The depth n of the iterated integral is called
transcendental weight. We refer to the notes [74] for a
thorough discussion. All GPLs can be rewritten in terms of
iterated integrals. The latter, however, offer two useful
advantages. The first is that—conjecturally—they imple-
ment automatically all the functional relations. Once a
GPL expression is rewritten in terms of iterated integrals in
a given alphabet fwig, finding the functional relations
becomes a linear algebra problem, as “words” ½wi1 ;…; win �
with different letters are linearly independent. The second
is that it is completely straightforward to write out the
solution of the canonical DEs (10) in terms of iterated
integrals. Equation (10) in fact implies the following
differential relation between consecutive components of
the ϵ expansion of the master integrals:

dMI
�!ðkÞ ¼

X58

i¼1

aid logwiMI
�!ðk−1Þ

; ∀ k ≥ 1; ð12Þ

where MI
�!ðkÞ

is the OðϵkÞ term of the master integrals.
Comparing Eq. (12) to Eq. (11), we see that the iterated

integral expressions of MI
�!ðkÞ

are obtained by adding a letter
to the right of those of the previous order, multiplying them
by the constant matrices ai, and adding the boundary values.
The master integrals are normalized to start from Oðϵ0Þ
and so theOðϵkÞ components have transcendental weight k.
We used the GPL expressions of Refs. [13,14] to

compute the values of the master integrals in an arbitrary
point s0 with 1100-digit precision. Using the PSLQ
algorithm [75], we determined the integer relations among
the boundary values and rewrote them in terms of a basis of
transcendental constants. Next, we used the differential
equations provided by Ref. [12] to express the relevant
master integrals in terms of iterated integrals. This allowed
us to determine a minimal set of linearly independent
integral components, order by order in ϵ up to ϵ4. We

denote these functions by ffðwÞi g, where w ¼ 1;…; 4 labels

the weight. Since each fðwÞi corresponds to an ϵ component
of the master integrals, we can evaluate them numerically
using the methods of Refs. [12–14], with the additional
advantage that they are linearly independent.
To subtract the poles analytically, we need to be able to

write in the same basis also the subtraction term. From the
transcendental point of view, the latter is given by the
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product of certain logarithms and transcendental constants
coming from the anomalous dimensions—π2 and ζ3—
times the one-loop amplitude. To accommodate this in the
basis, we add the transcendental constants as elements, and
work out the relations between the functions at each weight
and products of lower-weight ones using the shuffle algebra
of the iterated integrals. As a result, the functions in the

basis ffðwÞi g are indecomposable; i.e., they cannot be
rewritten in terms of lower-weight elements of the basis.
Armed with this function basis, we can proceed with the

reconstruction of the two-loop finite remainders. We map
the master integrals appearing in Eq. (9) onto a monomial

basis of the functions ffðwÞi g, which we denote by fmðfÞg,
and perform a Laurent expansion in ϵ up to Oðϵ0Þ. We do
the same for the subtraction term Pð2Þ. The resulting finite
remainder,

Fð2Þ
k ðfpgÞ ¼

X
i

ek;iðfpgÞmk;iðfÞ þOðϵÞ; ð13Þ

is indeed free of ϵ poles. We set s12 ¼ 1 to simplify the
reconstruction. The dependence can be recovered a poste-
riori through dimensional analysis. The coefficients

ek;iðfpgÞ in Fð2Þ
k are not all independent. We find the

linear relations between them and a set of additional
coefficients we supply as ansatz. We used tree-level
expressions, coefficients from the one-loop amplitude
and from the unreduced scalar integrals. Through these
linear relations we rewrite the complicated coefficients in
Fð2Þ in terms of known coefficients from the ansatz and
simpler ones, which finally have to be reconstructed.
Moreover, we simplify the reconstruction of the remaining
coefficients by partial fraction expansion with respect to
s23. First we determine the denominator factors by com-
puting a univariate slice and matching it against an ansatz
made of letters wi. Using the information about the deno-
minator and the polynomial degree in the numerator, we
construct an ansatz for the partial-fractioned expressions of
the coefficients. Then we fit the ansatz with a numerical
sampling. See Refs. [38,76,77] for recent work on multi-
variate partial fractioning. To emphasize the effectiveness
of our strategy, we note that the coefficients of the parity-
even (-odd) two-loop amplitude written in terms of GPL
monomials have maximal degree 62 (63). The maximal
degree drops to 54 (54) when we use the basis of special

functions ffðwÞi g in the finite remainder, and then to 31 (32)
in the remaining 4 variables after partial fractioning. The
reconstruction finally required 38663 (45263) sample
points over 2 prime fields, gaining a factor of 7 in the
reconstruction time with respect to the GPL-based
approach [78]. The reconstructed analytic expressions
are further simplified using the MultivariateApart package [77].

The iterated integrals expression of the fðwÞi functions
allow us to study the analytic structure of the finite

remainder in a very convenient way. Interestingly, we
observe that certain letters do not appear. As was already
noted in Ref. [12], the last nine letters do not show up in
any two-loop amplitude up to order ϵ0. Out of the relevant
49 letters, 6 (wi with i ∈ f16; 17; 27; 28; 29; 30g) appear in
the master integrals but cancel out in the two-loop
amplitude truncated at Oðϵ0Þ. Finally, the letter w49 ¼
tr5 is present in the two-loop amplitude, but cancels out in
the finite remainder. This letter has already been observed
to exhibit the same behavior in all the known massless two-
loop five-particle amplitudes [36–45,79], which has
spawned interest in the context of cluster algebras [80].
As regards the numerical evaluation, we propose a

strategy based on the generalized power series solution
of the DEs [69] applied not to the master integrals but
directly to the basis of special functions. If we rescale each

special function in the basis fðwÞi by a power of ϵ
corresponding to its weight, the ensuing list of functions

v⃗ ¼ fϵwfðwÞi ; 1g satisfies a system of DEs in the canonical
form (10). This follows from the differential property of the
iterated integrals (11). Differently from the DEs for the
master integrals, the DEs for the special functions contain
only the minimal amount of information necessary to
evaluate the finite remainder. For instance, instead of
evaluating all the weight-4 functions that may appear in
any one-mass two-loop five-particle amplitude, we can
restrict ourselves to evaluating only the 19 linear combi-

nations that actually appear in Fð2Þ
k . We therefore define a

new basis of special functions, fgðwÞi g, which at weight 4

includes the aforementioned 19 combinations of fð4Þi ’s, at

weight 3 contains only the fð3Þi ’s appearing in Fð2Þ
k and in

the derivatives of the gð4Þi ’s, and so on down to weight zero.
The resulting DEs are much simpler that those for the
master integrals. For instance, they are by-construction free
of the letters that do not appear in the finite remainder, and
their dimension is smaller than the number of master
integrals for all the relevant families. Finally, we evaluate

the gðwÞi ’s by solving the corresponding DEs using the
Mathematica package DiffExp [81]. We compute the boun-
dary values in an arbitrary point in the physical scattering

region through the correspondence between the gðwÞi ’s and
the master integral components.
The complete analytic expression of the two-loop finite

remainder in terms of rational coefficients and special
functions is included in the ancillary files, together with the
differential equation and the boundary values necessary to
evaluate the latter numerically [82]. We performed Ward
identity checks at the level of master integrals forMð2Þ

even and

at the level of the finite remainder for Mð2Þ
odd: we modified

the numerator functions by replacing the loop and tree-level
amplitude polarization vectors with p5 and p1, respectively,

and observed that Mð2Þ
even and Fð2Þ

odd vanish. We also
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compared numerically the finite remainders derived in this
work against results from an independent helicity ampli-
tude computation in the t’Hooft-Veltman scheme using the
framework of Ref. [11]. For the convenience of future

cross-checks, we provide the numerical values of Mð2Þ
k and

Fð2Þ
k at one phase space point in Table I.
Discussion and outlook.—The results we have obtained

represent a major step forward and open the door to
phenomenological applications. The identification of a
basis of special functions has resulted in a substantial
speed up over previous studies as well as uncovering
explicit cancellations and reduction in complexity. To
demonstrate the suitability for phenomenological applica-
tions we present the evaluation on a univariate slice of the
physical phase space. For this we use a parametrization in
terms of energy fractions and angles of the final state,

p3 ¼
x1

ffiffiffi
s

p
2

ð1; 1; 0; 0Þ;

p4 ¼
x2

ffiffiffi
s

p
2

ð1; cos θ;− sinϕ sin θ;− cosϕ sin θÞ;
p5 ¼

ffiffiffi
s

p ð1; 0; 0; 0Þ − p3 − p4; ð14Þ

where p1 and p2 are taken back to back along the z axis
with a total center-of-mass energy of s. We have chosen p3

to be produced at an elevation of π=2 from the z axis and
the on-shell phase space conditions impose cos θ ¼
1þ ð2=x1x2Þð1 − x1 − x2 −m2

W=sÞ. In Fig. 4 we plot
values of the one- and two-loop finite remainders against
x2 for a configuration with ϕ ¼ 0.1, mW ¼ 0.1, s ¼ 1, and
x1 ¼ 0.6. The special functions were evaluated with DiffExp

[81] using rationalized values of the invariants. An average
evaluation time of 260s over 1000 points was observed and
the function is smooth and stable over the whole region.
This demonstrates that even with a basic setup in
Mathematica a reasonable evaluation time can be achieved
and that realistic phenomenology can now be performed.

The results obtained here pave theway for a broader class
of 2 → 3 scattering problems. The solution of the IBP
system and the basis of special functions do not depend
on the on-shell approximation of the W boson and apply
equally to the planar sectors of pp → W=Z þ 2j (including
decays) and pp → H þ 2j. Going beyond leading color for
pp → W=Z þ 2j or any complete pp → H þ 2j ampli-
tudes at two loops still requires missing information on the
nonplanarmaster integrals; nevertheless we believe they can
be easily incorporated into the strategy we introduce here.
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