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We present a novel formalism to describe the in vacuo conversion between polarization states of
propagating radiation, also known as generalized Faraday effect (GFE), in a cosmological context.
Thinking of GFE as a potential tracer of new, isotropy- and/or parity-violating physics, we apply our
formalism to the cosmic microwave background (CMB) polarized anisotropy power spectra, providing a
simple framework to easily compute their observed modifications. In so doing, we re-interpret previously
known results, namely, the in vacuo rotation of the linear polarization plane of CMB photons (or cosmic
birefringence) but also point out that GFE could lead to the partial conversion of linear into circular
polarization. We notice that GFE can be seen as an effect of light propagating in an anisotropic and/or chiral
medium (a “dark crystal”) and recast its parameters as the components of an effective “cosmic
susceptibility tensor.” For a wave number-independent susceptibility tensor, this allows us to set an
observational bound on a GFE-induced CMB circularly polarized power spectrum, or VV, at CVV

l <
2 × 10−5 μK2 (95% C.L.), at its peak l ≃ 370, which is some 3 orders of magnitude better than presently
available direct VVmeasurements. We argue that, unless dramatic technological improvements will arise in
direct V-modes measurements, cosmic variance-limited linear polarization surveys expected within this
decade should provide, as a byproduct, superior bounds on GFE-induced circular polarization of the CMB.
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Introduction.—Polarization of the cosmic microwave
background (CMB) is the main observational target of
next-generation CMB experiments [1–3]. CMB photons
are expected to be linearly polarized by Compton scattering
at the epochs of recombination and reionization [4]. In
contrast, circular polarization is not expected to be present
at the time of last scattering. It can be generated by known
physics as CMB photons propagate across the Universe
[5–11], but only in tiny amounts. However, new physics
beyond the standard model of particle physics might be
responsible for the generation of a larger amount of
circular polarization [12–23]. Observing circular polariza-
tion in the CMB, therefore, could provide evidence for new
physics.
In this Letter, we introduce a phenomenological frame-

work describing the mixing of CMB polarization states
during propagation, including the generation of circular
polarization from a pure linearly polarized initial state. We
refer to such amixing as “generalized Faraday effect” (GFE)
[24,25] [26]. We use this formalism to derive formulas that
allow us to compute the “observed” CMB angular power
spectra (including the ones involving the circular polariza-
tion, V) from the ones that would be observed if GFE were
absent. The latter can be easily obtained from a Boltzman

code like camb [28] or class [29]. We further draw
inspiration from the propagation of light in anisotropic or
chiral media (e.g., crystals) to describe GFE as the result of
light propagating into a medium with an anisotropic and/or
parity-violating susceptibility tensor [30], and derive con-
straints on the components of this effective susceptibility
tensor from current data. We also discuss the potential of
future experiments in this respect.
Theoretical setup.—The transfer equation for polarized

radiation in a weakly anisotropic nonabsorbing [31]
medium reads [24,32,33]
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where Q, U, V are the Stokes parameters, s is an affine
parameter along the photon path, the ϵ’s are the spontaneous
emissivities, and the ρ’s describe GFE: ρV mixes Q and U
polarization and is thus responsible for Faraday rotation,
while ρQ and ρU mix linear polarization with V and are
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responsible for Faraday conversion. These quantities
depend, in principle, on conformal time τ, position x, and
radiation wave number p. In the following we will use the
comoving wave number q ¼ ap, with aðτÞ being the
cosmological scale factor, to describe the wave number
dependence.
CMB linear polarization is sourced by Thomson scatter-

ing at the epochs of recombination and reionization sources.
Fromnowonwe shall assume that theV emissivity is always
zero, while the Q and U emissivities are strongly peaked at
the time τrec of hydrogen recombination but vanishing
elsewhere, and study Eq. (1) with ϵ ¼ 0 for t > trec and
suitable initial conditions at recombination. Thuswe neglect
the linear polarization generated at the time of cosmic
reionization. We also neglect the effect of gravitational
lensing due to matter distribution along the line of sight. We
will come back to these approximations later.
When ϵ ¼ 0, the equation for the (polarization-only)

Stokes vector S≡ ðQ;U; VÞ can be recast as

dS
ds

¼ ρ ∧ S; ð2Þ

where we have introduced the vector in polarization space
ρ≡ ðρQ; ρU; ρVÞ, while ∧ represents the usual cross
product.
In this form, the equation lends itself to a

simple interpretation: the total polarization intensity
P ¼ jSj ¼ ðQ2 þ U2 þ V2Þ1=2 is conserved and the vector
S precedes with angular velocity jρj around the direction of
ρ, ρ̂. In other words, if ρ̂ is not changing, after some time t,
the vector S will have been rotated by an angle
2α≡ R jρjdt0 around ρ̂ [34]. The direction of ρ defines
the polarization of the natural modes of the medium: when ρ
is aligned along the V direction, the normal modes are
circularly polarized waves; when ρ is orthogonal to
the V direction the normal modes are linearly polarized.
In general, the normalmodes are elliptically polarized states.
Let us briefly comment about the behavior of Eq. (2)

under rotations around the direction of light propagation—
more pragmatically, under changes in the orientation of the
polarimeter. V is a (pseudo)scalar, but Q and U depend on
the choice of the reference frame used to measure polari-
zation. When this frame is rotated by an angle α, the
polarization vector rotates by an angle 2α around the V axis
in polarization space. Then, for the transfer equation to
behave covariantly under such transformations, both ϵ and
ρ need to transform in the same way as S; in other words,
they should be regarded as “proper” vectors in polarization

space. This is immediately evident by looking at the
transfer equation in the form (2).
In order to work with quantities with definite spin we

introduce the auxiliary polarization vector ΔPðτ;x;qÞ ¼
ðΔPþ;ΔP−; VÞ, where ΔP� ¼ ðQ� iUÞ= ffiffiffi

2
p

are the usual
spin �2 combinations of Q and U. We similarly define
ρ� ≡ ðρQ � iρUÞ=

ffiffiffi
2

p
; from the considerations above, it

follows that these should also be spin �2 quantities,
respectively, while ρV is a pseudoscalar.
From Eq. (2), we can write down the transfer equation

for ΔP in a perturbed Friedmann-Robertson-Walker
Universe. Expanding the spatial dependence of ΔP in
Fourier modes and keeping terms up to first order in
cosmological perturbations yields

∂ΔP

∂τ þ ikμΔP ¼ iKΔP; ð3Þ

where we have taken into account that the background
radiation field is unpolarized. This equation is valid both
for scalar and tensor modes. Here, k is the wave vector of
the perturbation, μ≡ k̂ · q̂, and we have defined the
Hermitian matrix

K ≡ fðτÞ

0
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where fðτÞ is a generic function of time while the ρ0;X’s are
time-independent coefficients. In deriving Eq. (3), we have
also assumed that the ρ’s do not depend on x. This is
equivalent to require that the physics behind the generalized
Faraday effect preserves homogeneity [35].
A formal solution to Eq. (3) with given initial conditions

at last scattering ΔPðτLSÞ ¼ ΔP;LS is [36]:

ΔPðτÞ ¼ exp

�
i
Z

τ

τLS

Kdτ0
�
Δ̃PðτÞ; ð5Þ

where Δ̃P solves the initial value problem

∂Δ̃P

∂τ þ ikμΔ̃P ¼ 0; Δ̃PðτLSÞ ¼ Δ̃LS: ð6Þ

We get the following relations between the components of
Δ and Δ̃ at a given time:

ΔPþðτÞ ¼ Δ̃Pþ þ i sin 2αðτÞρ̄−1ðρ̄VΔ̃Pþ − ρ̄þṼÞ þ ½1 − cos 2αðτÞ�ρ̄−2½ðρ̄þρ̄− − ρ̄2ÞΔ̃Pþ þ ρ̄2þΔ̃P− þ ρ̄þρ̄VṼ�;
ΔP−ðτÞ ¼ Δ̃P− − i sin 2αðτÞρ̄−1ðρ̄VΔ̃P− − ρ̄−ṼÞ þ ½1 − cos 2αðτÞ�ρ̄−2½ρ̄2−Δ̃Pþ þ ðρ̄þρ̄− − ρ̄2ÞΔ̃P− þ ρ̄−ρ̄VṼ�;
VðτÞ ¼ Ṽ − i sin 2αðτÞρ̄−1ðρ̄−Δ̃Pþ − ρ̄þΔ̃P−Þ þ ½1 − cos 2αðτÞ�ρ̄−2½ρ̄−ρ̄VΔ̃Pþ þ ρ̄þρ̄VΔ̃P− þ ðρ̄2V − ρ̄2ÞṼ�; ð7Þ
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where we are using a bar to denote quantities
averaged along the line of sight, i.e.,
ρ̄X ≡ ðτ − τLSÞ−1ρ0;X

R
τ
τLS

fðτ0Þdτ0, ρ̄2 ≡ ρ̄2Q þ ρ̄2U þ ρ̄2V ¼
2ρ̄þρ̄− þ ρ̄2V and 2αðτÞ ¼ ρ̄ðτ − τLSÞ. These equations
express the polarization perturbations after the mixing
[the “un-tilded” quantities appearing in the left-hand side
(lhs)] in terms of those that would be realized in the sky if
such a mixing were absent [the tilded quantities appearing
on the right-hand side (rhs)]. They can be seen as a
generalization of the equations for anisotropic cosmic
birefringence, that is sourced by Q −U mixing, to the
case of a Q −U − V mixing.
In order to characterize the statistics of the CMB

perturbations, we need to calculate angular power spectra.
We thus expand in spherical harmonics both sides of
Eqs. (7). We take Ṽ ¼ 0, coherently with the standard
expectation of the vanishing primordial V mode. While V,
Ṽ, and ρ̄V are scalar quantities and can be naturally
expanded in spin-0 spherical harmonics, ΔP�, Δ̃P�, and
ρ̄� should be expanded in spin-weighted s ¼ �2 harmon-
ics [37]. We denote the expansion coefficients of ΔP�, V
and Δ̃P� as a�=V;lm and ã�;lm, while the expansion
coefficients of ρ̄�=Vðτ − τLSÞ as b�2=V;lm respectively.
Projecting both sides of Eqs. (7) over the appropriate

spherical harmonics and keeping only terms up to second
order in α, we obtain

aE;L ¼ ãE;L þ ðGð1Þ
L1L
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ÞãE;L1

− ðGð2Þ
L1L

þHð2Þ
L1L

−Hð4Þ
L1L
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where we have introduced aE;L ¼ −ða2;L þ a−2;LÞ=2
and aB;L ¼ iða2;L − a−2;LÞ=2, L stands for (l, m), and
summation over repeated indices is understood. The
G and H kernels contain geometrical factors (products of
Wigner-3j symbols) and the b expansion coefficients at the
first and the second orders, respectively, but do not depend
on the other cosmological parameters. Their explicit form is
given in the Supplemental Material [38].
We can use Eqs. (8) to build correlators

CXY
LL0 ≡ haX;La�Y;L0 i. We focus on the diagonal components

(L ¼ L0), but in principle there is potentially valuable
information also in the off-diagonal terms. Defining
CXY
l ≡ ð2lþ 1Þ−1Pþl

m¼−l C
XY
LL, we get the following

expressions for the GFE-modified angular power
spectra:
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; ð9Þ

where we have defined theK kernels asKab
l1l

¼ ð2lþ 1Þ−1P
m1;m GðaÞ

L1L
GðbÞ�
L1L

, and 4πZ ¼ P
lm ðjbV;lmj2 þ jb2;lmj2Þ

[39]. In deriving these equations, we have assumed the
absence of primordial TB and EB correlations. The spectra
that do not appear in Eqs. (9) are equal to their unrotated
counterparts to second order in α. We note that the mixing
among the polarization components possibly leads to a
nonzero VV power spectrum as well as to parity-violating
power spectra, such as EB, TB, and EV.
Equations (9) encode, in a very general way, the

modifications due to GFE, linking the modified power
spectra to the power spectra that we would have in absence
of this effect: they follow quite generally from Eq. (1).
It is interesting to consider some limiting cases of

Eqs. (9). When only ρV ≠ 0, the Stokes vector rotates
around the V direction and onlyQ andU mix; this is the so-
called “cosmic birefringence,” widely studied in the liter-
ature. It is immediate to convince oneself that in this case α
is the birefringence angle, i.e., the angle of rotation of the
plane of linear polarization, and to recover, from Eqs. (9),
the equations for both isotropic and anisotropic birefrin-
gence at second order in α [40–42].
Similarly, when ρQ ≠ 0 and/or ρU ≠ 0, we recover

Faraday conversion, i.e., circular polarization is generated
by conversion of the primordial linear polarization as CMB
photons propagate through a birefringent medium along the
line of sight [9,43].
Mixing of polarization components can arise through

several mechanisms, involving either known physics or
more exotic models. Given such a mechanism, the ρ’s can
be computed and specific predictions for the observed
power spectra can be obtained. In order to see our
formalism at work, we adopt an agnostic point of view
and relate the GFE parameters to the optical properties of
the medium traversed by CMB photons.
The optical properties of a medium depend on the three-

dimensional (dielectric) susceptibility tensor χ. The more
general form of the dielectric tensor of a nondispersive
medium is [44]
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χ ¼

0
B@

χxx iχxy −iχxz
−iχxy χyy iχyz
iχxz −iχyz χzz

1
CA; ð10Þ

where the χij are all real, so that χ is Hermitian. We assume
that the medium is homogeneous, therefore χ does not
depend on position; it might however depend on the
radiation wave number. The diagonal (off-diagonal)
elements are responsible for different linear (circular)
polarization states propagating with different velocities,
and as such they violate isotropy (parity).
To the purpose of making a connection between

the three-dimensional susceptibility tensor and the ρ’s,
we compare Eq. (1) with the radiative transfer
equation written in terms of the susceptibility tensor
[25,32,33]:

� ∂
∂tþ p̂ · ∇

�
Iab ¼ Eab þ ið2πνÞðχð2Þac Icb − Iacðχð2Þ†ÞcbÞ;

ð11Þ

where Iab is the polarization tensor, Eab is the tensor of
spontaneous emission intensity per unit volume, ν is the

radiation frequency, and χð2Þab is the susceptibility tensor in
the plane perpendicular to the direction of light propaga-
tion. We then get, for the mixing coefficients in the
direction ðθ;ϕÞ:

ρQ ¼ 2πν0½ðχxxc2θ − χyyÞc2ϕ þ ðχyyc2θ − χxxÞs2ϕ þ χzzs2θ�;
ρU ¼ 4πν0ðχyy − χxxÞcθsϕcϕ;
ρV ¼ 4πν0ðχxycθ þ χyzsθcϕ þ χxzsθsϕÞ; ð12Þ

where ν0 ¼ aν, sX ≡ sinX, and cX ≡ cosX, and in general
the χij’s will themselves depend on ðθ;ϕÞ. Given the above
discussion on the connection between the elements of χ and
the symmetries of the medium, this relation makes clear
that in an anisotropic medium ρQ ≠ 0 and/or ρU ≠ 0, while
parity violation implies ρV ≠ 0.
A mechanism that alters the propagation of photons

across cosmological distances can be recast in terms of an
effective dielectric tensor, for example, by looking at how
the wave equation is modified. Then Eqs. (12) and (9) can
be readily used to obtain predictions for the observed CMB
angular power spectra. We explicit this procedure for a
dielectric tensor that does not depend on the radiation wave
number [45]. In this case, the modified spectra in Eqs. (9)
read
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where Wð1Þ
l and Wð2Þ

l are combinations of Wigner 3j
symbols, and

β2V ≡X
m0

jbV;1m0 j2 ¼ 16π

3
ðξ2xy þ ξ2yz þ ξ2xzÞ;

β2E ≡X
m0

���� 12 ðb2;lm þ b−2;lmÞ
����
2

¼¼ 8π

15
½ðξxx − ξyyÞ2 þ ðξyy − ξzzÞ2 þ ðξzz − ξxxÞ2�;

ð14Þ

having defined ξij ¼
R
τ0
τLS

2πν0χijdτ. Note that β2V and β2E
probe independent combinations of the χij’s, since they
only depend on the off- and on-diagonal components,
respectively.
The effects of these modifications are made clear in

Fig. 1, where we show polarization power spectra com-
puted assuming the best-fit Planck 2018 cosmology [46],
and the corresponding modified spectra for β2V ¼ 0.03 and
β2E ¼ 0.14 [47]. A nonvanishing V-modes power spectrum
is generated, whose shape mostly follows that of the
E-modes spectrum, as expected from Eqs. (13). The
B-modes power spectrum is dramatically affected even
for relatively small values β2V , because power leaks from the
much larger E modes. Note that in producing the curves in
Fig. 1 we only rotate the polarization produced at last
scattering.
Observational constraints.—Observations of CMB

polarization can be used to constrain the values of β2V
and β2E, in the framework of simple extensions of the
ΛCDM model. We use observations of temperature and
linear polarization anisotropies from the Planck legacy
release [48] and BICEP2/Keck 2015 [49] to derive bounds
on both β2V and β2E in the presence of primordial tensor
modes, parameterized by the tensor-to-scalar ratio r.
Using the Monte Carlo engine CosmoMC [50], we find
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β2V < 0.030, β2E < 0.14 and r0.05 < 0.055 at 95% CL [51]
In deriving these constraints, we have separated the effect
of lensing and GFE. In principle, these two effects might
be acting simultaneously and should be treated accord-
ingly. However, in our analysis, we rotate the unlensed
CMB power spectra, using Eqs. (13), and then we add the
lensing contribution as computed by camb. For the noise
level of current CMB data, we have checked that rotating
instead the lensed spectra leads to consistent results. We
thus argue that our treatment of lensing is accurate enough
for our purposes. This still holds for the LiteBIRD satellite
[2] and Simons Observatory [1]. Regarding fourth-
generation ground-based CMB experiments (e.g., CMB-
S4) [52], the interplay between lensing and GFE should be
modeled in more detail.
Circular polarization data are also sensitive to β2E, see

Eq. (13). Using the V-modes CMB polarization data from
the CLASS telescope [53,54], we find β2E < 38

(95% C.L.), assuming the Planck 2018 best-fit EE and
BB spectra. This constrain violates our assumption that
ρQ;U ≪ 1, nevertheless it indicates that current V-mode
data allow a large mixing of linear and circular polariza-
tion. We have shown that such a large mixing is,
however, excluded by current observations of E and B
polarization.
These constraints on the β’s can be recast in terms of the

χij. Taking ν0 ≃ 150 GHz as the frequency of the CMB
photons today, ξij ≃ 1.5 × 1030χij if the χ’s do not depend
on time. The constraint on β2V implies a bound χij ≤ 2.7 ×
10−32 for the largest off-diagonal element, while the one on
β2E implies χii − χjj ≤ 1.3 × 10−31 for the largest difference
between diagonal elements [55].

Conclusions.—In this Letter, we have derived a trans-
parent, and convenient to use, set of expressions for the
observed angular power spectra of CMB polarization,
including circular polarization, in the presence of general-
ized Faraday effect, i.e., the precession of the Stokes
polarization vector in ðQ;U; VÞ space. Equations (9) are
valid to second order in the small rotation angle of the
Stokes vector. To our knowledge, this is the first time that
such expressions appear in the literature. We have also
proposed a phenomenological framework in which the
Universe is regarded as an homogeneous but possibly
anisotropic and/or chiral medium for what concerns the
propagation of light. The optical properties of the medium
are encoded in its susceptibility tensor; models predicting
GFE can in principle be recast in such terms. We have
linked the expressions for GFE to the components of the
susceptibility tensor allowing for an easy way to derive
predictions for this class of models. Finally, we have
derived constraints for a simple benchmark model with a
wave number-independent susceptibility tensor. Also in
this case, this is the first time that such limits appear in the
literature. In Fig. 2 we show the current data on the CMB
VV power spectrum, together with theoretical power
spectra for β2E ¼ 38, corresponding to the 95% upper limit
allowed by current circular polarization data, and
β2E ¼ 0.14, corresponding to the 95% upper limit allowed
by current temperature and linear polarization data.
Forthcoming experiments, such as CLASS [54], will

likely improve the sensitivity on V modes. However, an
improvement in sensitivity by a factor ∼103 (at the level of
spectra) would be necessary to bring constraints from
circular polarization observations at the same level as the
current bounds from linear polarization; see Fig. 2.
Moreover, future linear polarization measurements from
LiteBIRD satellite will further improve the constraint on β2E
by roughly a factor 3, down to β2E < 0.05, while a cosmic

FIG. 2. V-modes power spectra as predicted by CLASS (solid
line) and Planck/BICEP2/Keck (dashed line), compared with
SPIDER [56] and CLASS [54] data.

FIG. 1. Top: “Rotated” (solid line) and “unrotaded” angular
power spectra (dashed line). For the rotated ones we have used
β2V ¼ 0.03 and β2E ¼ 0.14. In both case the other cosmological
parameters are the best-fit values of Planck 2018 and
r0.05 ¼ 0.07. Bottom: Absolute differences between rotated
and unrotated for EE and TE.
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variance-limited experiment could potentially reach
β2E < 0.01. We thus argue that linear polarization measure-
ments from forthcoming experiments will likely yield
stronger constraints on GFE than direct observations of
circular polarization, at least in the case of a wave number-
independent effective susceptibility tensor.
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