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We report on a numerical study of gravitational waves undergoing gravitational collapse due to their self-
interaction. We consider several families of asymptotically flat initial data which, similar to the well-known
Choptuik’s discovery, can be fine-tuned between dispersal into empty space and collapse into a black hole.
We find that near-critical spacetimes exhibit behavior similar to scalar-field collapse: For different families
of initial data, we observe universal “echoes” in the form of irregularly repeating, approximate, scaled
copies of the same piece of spacetime.
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Introduction.—Choptuik’s surprising discovery of criti-
cal behavior in gravitational collapse [1] showed that
numerical simulations of the Einstein equations may reveal
unforeseen features of the theory. It turned out that
evolution of a spherically symmetric massless scalar field
minimally coupled to general relativity with initial data
(ID) near the threshold between field dispersal and collapse
into a black hole takes the form of “echoes”—repeated
concentrations of the field appearing on progressively
smaller scales. While the first few echoes retain some
imprint of the ID family, later on the metric and the field
look like scaled-down copies of earlier moments (discrete
self-similarity) and approach the same profile for any ID
fine-tuned toward the black-hole threshold (universality).
Extensive follow-up research (see Ref. [2] for a detailed
review) then showed that similar behavior occurs for many
other fields.
If the initial data form a one-parameter family, with A

being the parameter, then quantities such as the mass of the
black hole created during the collapse mBH, the number of
echoes observed, or the maximal field strength depend on A
in a characteristic way as it approaches the critical value A�;
e.g., mBH ∼ ðA − A�Þγ with γ ≐ 0.373 for spherically sym-
metric minimally coupled massless scalar field. Later on,
more detailed features such as a periodic modulation [2]
and a lower bound of the scaling law for mBH [3] were
described.
Gravitational waves (GWs), an appealing alternative to a

massless scalar field, have also been studied in the context
of critical collapse [4–12] (see Ref. [12] for a detailed
description of these attempts).
In general relativity (in 3þ 1 dimensions; cf. Ref. [13]),

there are no spherically symmetric gravitational waves,
which makes numerical simulations much more computa-
tionally demanding. Even with modern powerful com-
puters and advanced numerical techniques, no universal
and across scales repeating profile of the gravitational field

analogous to that in the seminal paper [1] has been
reported. Moreover, Hilditch et al. [12] brought a strong
argument against a simple analogy with spherically sym-
metric collapse—for the initial data closest to the critical
amplitude, a pair of apparent horizons appeared. Recently,
critical collapse away from spherical symmetry has also
been probed using models of combined gravitational
and electromagnetic fields [14] and a semilinear scalar
wave [15].
Methods.—Our numerical simulations use an uncon-

strained evolution scheme, the so-called Baumgarte-
Shapiro-Shibata-Nakamura version of the Einstein equa-
tions [16,17]. We use the Einstein Toolkit framework [18]
modified to analytically assume axial symmetry, and
extended by a code solving elliptic equations for initial
data and slicing.
Coordinate choice: The standard 1þ log slicing con-

dition has been shown to break down in the numerical
evolution of collapsing gravitational waves [10]. Instead,
we use the quasimaximal slicing (QMS) that we introduced
recently [19] to handle such highly dynamic spacetime
geometries. We changed its implementation to use a
multigrid method together with a scheme based on
Ref. [20] in order to be compatible with the Berger-
Oliger mesh refinement, which we use to evolve hyperbolic
equations.
Initial data: In the 3þ 1 approach to general relativity,

initial data are specified as 3-tensor fields γij and Kij—the
intrinsic metric and the extrinsic curvature—on the initial
Cauchy hypersurface. These fields must satisfy a set of
coupled nonlinear elliptic equations (Hamilton and
momentum constraints) implied by the Einstein equations.
We study two axi- and plane-symmetric ID families with
trace K ¼ γijKij ¼ 0 (i.e., compatible with the maximal
slicing). The first family is the Brill data, first studied
numerically in Ref. [21]. Their main feature is time
symmetry due to Kijðt ¼ 0Þ ¼ 0. Gravitational waves

PHYSICAL REVIEW LETTERS 127, 011104 (2021)

0031-9007=21=127(1)=011104(5) 011104-1 © 2021 American Physical Society

https://orcid.org/0000-0002-6341-2227
https://orcid.org/0000-0002-9569-381X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.011104&domain=pdf&date_stamp=2021-07-02
https://doi.org/10.1103/PhysRevLett.127.011104
https://doi.org/10.1103/PhysRevLett.127.011104
https://doi.org/10.1103/PhysRevLett.127.011104
https://doi.org/10.1103/PhysRevLett.127.011104


are then encoded as a deformation of the initial slice
intrinsic metric γijðt ¼ 0Þ written in standard spherical
coordinates,

γijdxidxj ¼ ψ4½e2qðdr2 þ r2dθ2Þ þ r2sin2θdϕ2�: ð1Þ

We choose the “seed function” thoroughly studied in
Ref. [12]

qðxiÞ ¼ Aσ−2r2e−r
2=σ2 sin2θ; ð2Þ

where we introduce a scale parameter σ, leaving A
dimensionless. The conformal factor ψ must be found
by solving the Hamilton constraint.
The second family of initial data is inspired by Ref. [5]

where the initial 3-metric is taken to be conformally flat,
and one component of Kij—Kr

θ—is chosen to be the
deformation seed. This leads to three coupled constraint
equations to solve for ψ, Kr

r, and Kϕ
ϕ. However, despite

following Ref. [5] to the best of our ability, we were not
able to reproduce their data exactly (as is clear, e.g., from
very different critical amplitudes), and so we use it merely
as inspiration, choosing a visually similar profile

Kr
θðxi; t ¼ 0Þ ¼ Aσ−3r2ðσ − rÞe−r2=σ2 sin 2θ: ð3Þ

Solutions of the constraints for A > 0 then turn out to be
nonunique in a way very similar to Ref. [22]; there exists a
value Amax ≈ 1.362 47 such that there are two solutions for
0 < A < Amax and none for A > Amax. On the “lower”
branch, the data behave as expected; they approach flat
space as A → 0 and their Arnowitt-Deser-Misner (ADM)
mass MADM grows with increasing A. By contrast, on the
“upper” branch the mass grows with decreasing A, appa-
rently diverging as A → 0. As A → Amax, both branches
approach the same solution, so we can consider them
together as a single ID family with continuously growing
ADM mass. We mark the upper-branch solutions with a
bar; e.g., A ¼ 1.0 is an upper-branch solution with
MADM ≐ 1.06σ, while A ¼ 1.0 is a lower-branch solution
with MADM ≐ 0.104σ.
One can also consider negative values of A—for ID (1)

this leads to a different initial data family [10]. However,
for ID (3) replacing A → −A merely flips the sign of Kij;
i.e., we get the same initial slice evolved backward in time.
Since the data are time asymmetric (TA), critical collapse
can be studied for A < 0 as for a new ID family.
Coordinate-independent analysis: Even though the

Kretschmann scalar IK ≡ RαβγδRαβγδðα; β ¼ 0..3Þ built
from the Riemann tensor Rαβγδ is not a direct measure
of spacetime curvature due to Lorentzian signature of
spacetime metric, it is still an obvious coordinate-indepen-
dent scalar quantity providing an invariant indicator of the
gravitational field strength. In an axisymmetric vacuum
spacetime, there are additional coordinate-independent

scalars available. The circumferential radius ρ and the
norm of its gradient ρ;αρ;α are the simplest ones, but their
values are trivial at the axis of symmetry ρ ¼ 0. We thus
propose to use their combination ζ ≡ ð1 − ρ;αρ

;αÞ=ρ2
(completed by an appropriate limit at the axis; see also
Ref. [19]) as a coordinate-independent indicator of the
spacetime geometry. It can be shown that Ψ2jρ¼0 ¼ 1

2
ζjρ¼0

is the only nonvanishing projection of the Weyl tensor (as
defined, e.g., in Ref. [23]) onto an axis-aligned null tetrad,
so at the axis, we also have IKjρ¼0 ¼ 12ζ2jρ¼0

.
Results.—Critical amplitudes: We observed behavior

compatible with the existence of critical amplitudes sepa-
rating dispersal and black-hole formation. The limiting
factor in near-critical simulations is the sufficient resolution
of the QMS solver, without which the coordinate singular-
ities known from Ref. [10] appear. Importantly, it turned
out that some ID families are less prone to those pathol-
ogies than others and so require less computational effort.
Among several attempts, the initial data (3) appeared to be
least demanding. We concentrated the available resources
(∼104 CPU hours per run) here and obtained five echoes

and ATAþ� ≐ 1.300 807 9�4. For negative values of the

parameter, we get ATA−� ≐ −1.224 34�5. The Brill initial
data (1) defied our bisection attempts most, and we got an
interval ABrillþ� ≐ 4.697�1 compatible with the much better
result ABrillþ� ≐ 4.696 695 3�78 in Ref. [12]. With negative
A and less effort, we found ABrill−� ≐ −3.509 106�5.
Scaling: To relate our work to existing results, we start

by discussing how the extrema of the Kretschmann scalar
Imax
K depend on the amplitude parameter A. Plots showing
Imax
K ðAÞ, which reduce the entire evolution of the initial data
to a single number, are inspired by the typical behavior of a
scale-invariant spherically symmetric critical collapse. It
admits critical solutions exhibiting a discrete self-symmetry
(DSS) [2], i.e., containing a geometric sequence with a
quotient e−Δ of scaled-down copies of the same field
configuration. The evolution of near-critical initial data in
the central region (in the past null cone of the accumulation
point) first approaches this solution, then exhibits several
almost-DSS cycles, and finally, either the scalar field
undergoes dispersion or forms a black hole. Then, for sub-
critical spacetimes, the quantity ðImax

K Þ1=4 with the dimen-
sion of inverse length indicates the smallest scale up towhich
the evolution in the central region stays close to the critical
solution. The approximate relation between this scale and
the parameter A again has the form ðImax

K Þ−1=4 ∼ jA − A�jγ .
For subcritical GW collapse, we observed that near A�

the Kretschmann invariant IK attains its most pronounced
extrema at the axis of symmetry coinciding with the
minima of the invariant ζ. As A → A�, echoes with ever
higher amplitudes appear, and the strongest echo for a
given A determines the value Imax

K . These are shown in
Fig. 1, where individual simulations are shown as data
points for four families of initial data. (The overlapping
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markers at jA − A�j ≈ e−7.3 show the simulation for which
Imax
K appears off the z axis.) Each ID family can be
approximated by a power law, with the critical exponent
estimates γTAþ ¼0.35�3, γTA− ¼0.37�8, and γBrill−¼0.19�3.
According to Ref. [12], γBrillþ ≐ 0.37. In our fits, we
excluded data points corresponding to the first echo so that
a direct influence of the initial data form is suppressed.
A similar approach applied to the results ofRef. [12] seems to
yield γBrillþ > 0.5.
These differences in the exponent γ appear to be

significant, but we cannot decide if the slopes in Fig. 1
really settle toward a specific value for a given family or
whether they continue fluctuating significantly with further
echoes appearing without apparent order. One could claim
that our simulations are merely not close enough to A�, but
we will show that individual echoes have a universal form,
so this argument does not seem convincing.
We categorize the ID as supercritical if we find an

apparent horizon (AH). Because some AHs grow rapidly at
first, and it is impractical to store all the data for
postprocessing, we determine the initial AH mass MAH
with a considerable “sampling” error. We estimate it to be
≲20% for −9.5 < ϵA < −2, where ϵA ≡ log jA − A�j. In
this interval, μ≡ logðMAH=σÞ satisfies μTAþ ¼ −0.44þ
0.17ϵA � 0.15, μTA− ¼ 0.07þ 0.21ϵA � 0.13, and μBrill− ¼
−0.49þ 0.17ϵA � 0.10. For ID (1) with A > 0, we get γ ≈
0.16 for −6 < ϵA < −1. Below these intervals, we observe
bifurcated horizons: For ID (1) with ABrillþ ¼ 4.698, in
agreement with Ref. [12], we find a pair of AHs,

each with MAH ≐ 0.10σ. In addition, for ID (3) with
ATAþ ¼ 1.300 801 2, we get a pair with MAH ≐ 0.037σ.
By contrast, the Imax

K slopes γTA� and γBrill− given above
include only the bifurcated curvature extrema (as seen in
Fig. 2). Thus, we assume they describe the behavior close
to A� more faithfully. Further complications associated with
the use of apparent horizons for critical behavior inves-
tigation are discussed in Ref. [12].
Self-similarity and universality: Typically, the scale-

invariant collapse in spherical symmetry permits a DSS
critical solution. An approximation of this critical solution
then appears inside a so-called self-similarity horizon for an
arbitrary spherically symmetric one-parameter ID family if
the parameter is fine-tuned between dispersal and collapse.
In this Letter, we argue that for GW, we find analogous yet
more complicated behavior: The spacetime regions near the
extrema of Imax

K appear repeatedly as scaled approximate
copies (a limited and irregular analog of self-similarity) of
the same piece of a spacetime and independent of the ID
family (universality).
In a spherically symmetric DSS spacetime and assuming

adapted coordinates, all dimensionless quantities are

FIG. 1. Global maxima of the Kretschmann invariant in sub-
critical spacetimes with four families of initial data depending on a
parameterA. AsA approaches the critical valueA�, the maxima get
ever larger, as newly appearing local extrema overtake earlier ones.
To illustrate the smooth dependence of these local extrema (echoes)
on the parameter A, we fit the simulation results shown as points
with a polynomial—typically a simple linear dependence
log Imax

K ¼ pAþ q. The plotted curves are thus composed of
segments, each corresponding to a specific local maximum being
the strongest one. An effect of the uncertainty ofA� within the final
bisection interval is indicated in the rightmost segments; ABrillþ� is
taken from Ref. [12]. FIG. 2. Comparison of the echoes in the curvature invariant ζ

between different collapse scenarios. Since its extrema span
several orders of magnitude, shown are the contours of a
dimensionless (but coordinate-dependent; see text) quantity ðτ� −
τÞ2ζ in the t-z plane. In aDSS setup, this quantitywould repeatedly
acquire the same extremal values on ever smaller scales as τ → τ�
(near-critical massless scalar-field collapse [3] in the right panel).
Left: ATAþ ¼ 1.300 808 28, z0 ¼ 0.084 15σ, τ� ¼ 3.88σ. Center:
ABrill− ¼ −3.509 062 5, z0 ¼ 0.161σ, τ� ¼ 5.9σ.
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periodic functions of the logarithmic time log jτ� − τj [2],
with τ being the central proper time, which takes the value
of τ� at the accumulation event. Because the curvature
extrema in critical GW collapse appear at z ≠ 0, to define τ
we choose the worldline of constant z ¼ z0 on which the
global maximum of the Kretschmann invariant appears.
Because of our choice of shift βi ¼ 0, this worldline is
timelike. We then distribute τ over our (approximately
maximal) slices t ¼ const and construct a dimensionless
quantity ðτ� − τÞ2ζ. Despite its coordinate dependence, it is
remarkably efficient in “equalizing” the echoes to a
common scale. The spacetime diagrams in Fig. 2 demon-
strate this by showing the similarity of the echoes across
very different families (1) and (3).
The right panel shows the same quantity for a scalar-field

collapse computed according to Ref. [3], where we take
τ≡ uþ r outside of the center. It illustrates significant
differences between scalar-field and GW critical collapse,
with the latter having spacetime curvature concentrated into
irregularly appearing spikes with ≈200× larger values of
the same dimensionless quantity.
To assess the tendency toward DSS behavior, we

consider consecutive local spacetime minima ζn−1; ζn
separated by the geodesic proper time interval τn − τn−1.

We define ΔðζÞ
n ≡ log½ðζn=ζn−1Þ1=2� for the curvature-scale

ratio and ΔðτÞ
n ≡ log½ðτn − τn−1Þ=ðτnþ1 − τnÞ� for the time-

scale ratio. In a DSS spacetime ΔðζÞ
n ¼ ΔðτÞ

n ¼ Δ. From
ζn in sub- and supercritical simulations closest to A�,
we obtain ΔðζÞ

TAþ ¼ f0.68; 0.98; 1.02�2; 1.2�3g, ΔðζÞ
Brill− ¼

f0.38; 0.68�1; 0.5�1g, and ΔðζÞ
TA− ¼ f0.55; 0.96�4g for five,

four, and three echoes seen for respective ID in Fig. 1.

For the timescales, we get ΔðτÞ
TAþ ¼ f−0.1; 0.4; 2.1�1g,

ΔðτÞ
Brill− ¼ f0.3; 1.1�1g, and ΔðτÞ

TA− ¼ f0.1g.
Although these numbers seem incompatible with DSS

behavior, it is remarkable that while ζ spans the ratio>400,
using the quantity ðτ� − τÞ2ζ devised on self-similarity
arguments, this ratio reduces to a factor ∼3.
To demonstrate the universal shape of the echoes, we

notice that they consist of characteristic pairs of negative
and positive extrema of the invariant ζ appearing on the z
axis separated by a timelike spacetime interval, where the
negative peak of ζ of the strongest echo determines Imax

K in
Fig. 1. Then we can consider the dependence of ζ on the
proper time τ along the geodesic xαðτÞ connecting these
two nearby spacetime extrema. We multiply both τ and ζ by
an appropriate power of the same scale factor λ which we
fix so that the minimal values of the dimensionless function
ζ0ðτ0Þ≡ λ2ζ(xαðλτ0Þ) match.
In Fig. 3, we compare such rescaled profiles of the

invariant ζ for different extrema of the same evolution to
demonstrate their mutual similarity, and for various initial
data families to demonstrate universality. We approximate
the geodesic connecting the extrema by the worldline

z ¼ const, and to draw the curves, we interpolate the grid
values by third-order polynomials. For a generic ID family,
the first extreme(s) of ζ will have a different profile.
For Eq. (1) with A > 0, it not only has a different
shape, but its amplitude is so high that the next echo does
not surpass the already established Imax

K . As we see in
Fig. 3, the profile of this weaker echo already agrees well
with that of a “universal” one. Its segment appears in Fig. 1
at logðσI1=4K Þ ≈ 4.
A single scalar invariant is not enough to determine the

spacetime geometry unambiguously, but because we know
that ζ is the only nonvanishing component of the Riemann
tensor at the axis, the echoes also represent approximate
scaled copies of the same patch of spacetime. Because near
its maximum ζ changes only slowly in the z direction, it is
interesting that a similar but time-symmetric profile of ζ
appears at the axis for the Weber-Wheeler-Bonnor cylin-
drical GW pulse [24].
Conclusions.—Critical collapse of gravitational waves

has been studied for a long time with the hope that a clear,
universal, discretely self-symmetric structure will appear.
We showed that the first echoes in a near-critical collapse
exhibit only a partial similarity to the DSS behavior of a
massless scalar field. While we observed a universal profile
of the echo forming patches of strongest spacetime curva-
ture as approximate copies of a universal template, these
appear with apparently irregular delays and scales. Thus,
we did not observe a universal and regularly self-similar
solution in the A → A� limit, and the dimensionless
characteristics of the near-critical behavior seem to depend
on the ID family.
We think the observed critical behavior, so distinct from

that of spherically symmetric fields, requires further atten-
tion. It is natural to focus on the closest neighborhood of the

FIG. 3. Profiles of invariant ζ as a function of proper time τ
along a timelike worldline through echo. To compare the profiles,
rescaled quantities are used: ζ0 ¼ λ2ζ and τ0 ¼ τ=λ, where the
same scale λ is chosen so that minðζ0Þ ¼ −2. Top curves show
shifted value ζ0 þ 1 of five successive echoes evolved from initial
data (3) with ATAþ ¼ 1.300 808 28. Bottom curves relate ob-
served profiles of ζ0 for indicated amplitudes of four different
families of initial data.
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critical amplitudes, but it is possible that even then the
nonuniversal aspects of the critical GW collapse will
remain, because without the spherical symmetry, ID may
leave behind a curved spacetime arena in the vicinity of the
accumulation event.
As A → A� the numerical simulations become increas-

ingly expensive. It seems important to study the critical
behavior of more diverse or more dimensional families of
initial data. This may be a computationally cheaper way to
understand certain phenomena, e.g., the origins of the
apparently irregular echoing structure.
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