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The theory of fluctuating hydrodynamics has been an important tool for analyzing macroscopic behavior
in nonlinear lattices. However, despite its practical success, its microscopic derivation is still incomplete. In
this work, we provide the microscopic derivation of fluctuating hydrodynamics, using the coarse-graining
and projection technique; the equivalence of ensembles turns out to be critical. The Green-Kubo (GK)-like
formula for the bare transport coefficients are presented in a numerically computable form. Our numerical
simulations show that the bare transport coefficients exist for a sufficiently large but finite coarse-graining
length in the infinite lattice within the framework of the GK-like formula. This demonstrates that the bare
transport coefficients uniquely exist for each physical system.
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Introduction.—Hydrodynamics is a universal theory that
describes the flow of locally conserved quantities. In
addition to the development of numerical computation of
complicated flow in macroscopic systems [1], the concept
of hydrodynamics has been extended to nanofluids [2] and
cold atomic systems [3–5], where the standard hydro-
dynamics in textbooks of fluid dynamics [6] cannot be
directly applied. In particular, for low-dimensional fluids,
macroscopic transport coefficients such as heat conduc-
tivity diverge due to a long-time tail in the correlation
functions [7–11], which has been experimentally observed
in low-dimensional materials [12,13]. Even for such
anomalous transport, it has been recognized that fluctuating
hydrodynamics (FH) [6,14] can provide a quantitative
prediction of dynamical phenomena assuming the form
of the equations and choice of parameter values [8,15–17].
A key drawback of the theory is the absence of a micro-
scopic formula for the bare transport coefficients. A naive
application of the standard Green-Kubo (GK) formula leads
to a divergent answer. The detailed form of the transport
coefficients is crucial for our understanding of the strong
finite-size effects seen in near-integrable models [18]. In
order to deepen our understanding it is thus desirable to
derive the FH from a microscopic mechanical model and to
connect the parameter values in the hydrodynamic equa-
tions with those of the microscopic Hamiltonian.
Let qn and pn be variables that represent the position

and momentum of the nth particle in a one-dimensional
lattice. The Hamiltonian is generally described as

H ¼
XN
n¼1

p2
n=2þ VðrnÞ; rn ¼ qnþ1 − qn; ð1Þ

where the masses are set to unity and rn is the stretch
variable. The potential V depends solely on the stretch
variables. Anomalous heat transport, which refers to the
divergence of the heat conductivity, has been extensively
studied for this Hamiltonian [9–11]. Since there are three
locally conserved quantities: the stretch, momentum, and
energy, the long time and large distance behavior of the
nonlinear lattice may be described by the effective dynam-
ics of their densities uaðxÞ at position x in the continuous
picture, where the subscript a stands for the stretch (a ¼ r),
momentum (a ¼ p), and energy (a ¼ ϵ). According to the
FH theory for this system [16,17], the time evolution of
uaðxÞ near equilibrium is assumed to obey

∂tua ¼ −∂x

�
Ja;leqður; up; uϵÞ

−
X

a0¼r;p;ϵ

Da;a0∂xua0 þ ξa;xðtÞ
�
: ð2Þ

Here, Ja;leq denotes the local equilibrium current which is
given as a function of ður; up; uϵÞ for each x. The functional
form of Ja;leq is determined from the local equilibrium
thermodynamics or the local equilibrium distribution.
The terms D and ξ, respectively, stand for dissipation
and noise, which are both put by hand in order that the
equilibrium properties are guaranteed, imposing the fluc-
tuation dissipation relation [19]. Recently, in Ref. [17],
Spohn has analyzed the local equilibrium current by
transforming the three conserved variables into left and
right moving sound modes, and a heat mode, and, con-
sequently, derived the nontrivial connection to the Kardar-
Parisi-Zhang equation of the nonlinear chains. In addition,
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through the mode-coupling calculation, the anomalous
behavior in the current correlation has been clarified.
Later, the scaling form of the space-time correlations
arising from hydrodynamics has been numerically con-
firmed in many types of systems [20–25].
Despite its success, the derivation of FH from

Hamiltonian dynamics is still incomplete. In particular,
let us focus on the parameter Da;a0 which is referred to as
the bare transport coefficients (Below, we use this termi-
nology for all related quantities that are locally trans-
formed.). These should be distinguished from the
macroscopic transport coefficients measured under non-
equilibrium conditions, such as heat conductivity. The latter
corresponds to renormalized transport coefficients obtained
by taking hydrodynamic fluctuations into account. The
fundamental problem here is to derive the bare transport
coefficients Da;a0 from Hamiltonian dynamics. We remark
that while the diffusion term formula for integrable chains
has been studied in the framework of generalized hydro-
dynamics [26–28], it is unavailable for nonintegrable
systems in view of the fact that a simple application gives
a divergence in this case. Hence, a more strict and general
formulation is necessary to complete the FH theory.
Differences between microscopic expressions of bare

transport coefficients and macroscopic transport coeffi-
cients have been addressed in the context of projection
operator methods [29–32]. However, the debate remained
formal, and the details on the bare transport coefficients
could not be studied due to several uncontrolled functional
forms that arise in the derivation. Note that in the mode-
coupling calculations in Ref. [17], the assumption of finite
bare transport coefficients is critical in deriving diverging
heat conductivity. However, the existence of finite bare
transport coefficients is still an open question especially in
one dimension [16]. Here we show that a systematic
application of the projection formalism and using the
ensemble equivalence technique lead to a modification
of the standard Green-Kubo formula. This procedure leads
to finite bare transport coefficients.
Coarse graining and projection.—We consider the

Hamiltonian (1) with the total number of sites N and we
impose the periodic boundary conditions rnþN ¼ rn and
pnþN ¼ pn for the stretch and the momentum variables,
respectively [33]. In addition, we introduce the following
notations to simply indicate phase-space-dependent con-
served quantities at any site n:

ĉr;n ≔ rn; ĉp;n ≔ pn; ĉϵ;n ≔ p2
n=2þ VðrnÞ: ð3Þ

Throughout this study, the symbol ˆ on a variable implies
that it is a function of the entire phase space
Γ ½¼ ðr1; p1;…; rN; pNÞ� and hence, the detailed values
are given once the phase space is specified. We also
denote the current for the conserved quantities ĉa;n

at any site n by ĵa;n, which is given as ĵr;n ¼ −pn,
ĵp;n ¼ −∂Vðrn−1Þ=∂rn−1, and ĵϵ;n ¼ −pn∂Vðrn−1Þ=∂rn−1.
As a first step to obtain the hydrodynamics, we introduce

a coarse graining for conserved quantities:

ûr;x ≔ ð1=lÞðqG;xþ1 − qG;xÞ;

ûb;x ≔ ð1=lÞ
Xxl

n¼ðx−1Þlþ1

ĉb;n; ðb ¼ p; ϵÞ; ð4Þ

Ĵ r;x ≔ −ûp;x;

Ĵ b;x ≔ ĵb;ðx−1Þlþ1; ðb ¼ p; ϵÞ
ð5Þ

where the number l is the coarse-graining length and
hence, we set the total number of sites N to a multiple of l,
and x ¼ 1;…; N=l. The variable qG;x is the position of
center of mass for the xth coarse-graining block defined as
qG;x ¼ ð1=lÞPxl

n¼ðx−1Þlþ1
qn. Note that the coarse-grained

stretch variable ûr;x is a function of microscopic stretch
variables ĉr;n [34]. One can easily check that the coarse-
grained variable û is again a conserved quantity; i.e., the
summation of the variables over x is conserved. The
coarse-grained current denoted by Ĵ a;x is connected to
the variable ûa;x through the continuity equation, i.e.,
∂tûta;x ¼ fûta;x; Ĥg ¼ −∇xĴ

t
a;x, where the superscript t

implies the time dependence and f…;…g is the Poisson
bracket and the derivative is defined as ∇xAx ≔
ð1=lÞðAxþ1 − AxÞ for an arbitrary function Ax. For large
l, the variable ûa;x becomes a macroscopic variable, while
the currents Ĵ p;x and Ĵ ϵ;x are microscopic variables
defined locally at the boundaries between coarse-graining
blocks. See Fig. 1.
Each macrostate defined by the set ûa;x corresponds to a

large number of microstates and so the evolution of ûa;x is
not deterministic. The internal degrees of freedom serve
like a heat bath providing dissipation and noise that drives
the “slow” hydrodynamic fields. As we now show, the
projection formalism allows us to efficiently derive a
Fokker-Planck equation for the fields and from this identify
the Langevin equations that give us the required FH in
Eqs. (2). Let ρ̂t be the full phase space density obeying the
standard Liouville equation, ∂tρ̂t ¼ fĤ; ρ̂tg≕Lρ̂t. Then,

FIG. 1. Schematic of the coarse graining. We define the x
coordinate with a unit of l sites. The coarse-grained currents Ĵ p;x

and Ĵ ϵ;x are locally defined between the blocks.
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we define the following distribution of the coarse-grained
variables:

ftðuÞ ≔
Z

dΓρ̂tðΓÞ
Y

a¼r;p;ϵ

YN=l

x¼1

δðûa;xðΓÞ − ua;xÞ; ð6Þ

where the integral is defined over the entire phase space.
This is the distribution that the variable fûa;xg takes the
c-number value fua;xg. The evolution of ft is given by

∂tftðuÞ ¼ ∂t

Z
dΓρ̂tðΓÞ

Y
a;x

δðûa;xðΓÞ − ua;xÞ

¼
Z

dΓρ̂tðΓÞ
X
a0;x0

∇x0Ĵ a0;x0 ðΓÞ

×
δ

δua0;x0

Y
a;x

δðûa;xðΓÞ − ua;xÞ:

We now use the crucial idea of defining a projection
operator [29,35] P which projects any function Â onto
the coarse-grained conserved variables as

PÂðΓÞ ¼
Z

dΓ0ÂðΓ0Þ
Y
a;x

δ½ûa;xðΓ0Þ − ûa;xðΓÞ�=Ω̂ðûÞ; ð7Þ

where the normalization Ω̂ðûÞ is defined as
Ω̂ðûÞ ¼ R

dΓ0Q
a;x δ½ûa;xðΓ0Þ − ûa;xðΓÞ�. If different

phase-space points give the same value in the coarse-
grained variables, projected observables also yield the
same value between these phase-space points. The projec-
tion redefines a function in terms of coarse-grained con-
served quantities. The projection enables us to write
ρ̂t ¼ Pρ̂t þQρ̂t, where Q ¼ 1 − P, which separate the
evolution into a slow part following the conserved fields
and a fast part from the internal degrees. Then from a
straightforward calculation that involves using the
Markovian approximation (Sec. III in the Supplemental
Material [33]), we obtain the Fokker-Planck equation for
the distribution ftðuÞ [Eq. (S.19) in Ref. [33] ]. Finally,
using standard procedure we find the corresponding
Langevin equation [Eqs. (S.21–S.31) in Ref. [33] ]:

∂tua;x ¼ −∇x

�
hĴ a;xiuLM −

X
a0
DðAÞ

a;a0∇xua0;x

−
X
a0
DðSÞ

a;a0∇xua0;x þ ξa;xðtÞ
�
; ð8Þ

where the term ξa;xðtÞ is the noise at time t satisfying
the fluctuation dissipation relation ⟪ξa;xðtÞξa0;x0 ðt0Þ⟫ ¼
2Ka;aδa;a0δx;x0δðt − t0Þ with the bare transport coefficient
given explicitly below in Eq. (10). The first line indicates
the reversible terms, while the second indicates the

irreversible terms consisting of noises and bare transport
coefficients. The term hĴ a;xiuLM is the local equilibrium
current in Eq. (2), which turns out to be given as the average
with respect to the local microcanonical ensemble ρ̂LM:

ρ̂LM ≔
Y
a;x

δðûa;x − ua;xÞ=ΩðuÞ; ð9Þ

which is the distribution for the values fua;xg on the phase
space. The denominator is a normalization defined as
ΩðuÞ ¼ R

dΓ
Q

a;x δ½ûa;xðΓÞ − ua;x�. The bare transport
coefficient is expressed in terms of the Green-Kubo-like
formula as

DðS;AÞ
a;a0 ¼ P

a00
ð1=2ÞðKa;a00 � Ka00;aÞΛa0;a00 ;

Ka;a0 ¼
Z

∞

0

dsCa;a0 ðsÞ;

Ca;a0 ðsÞ ¼ ðl=NÞ
��P

x
QĴ a;x

��
esL

P
x0
QĴ a0;x0

��
eq
;

ð10Þ

where h…ieq is the average over the equilibrium distribu-

tion ρ̂eq ¼ e−
P

n
ðĉϵ;nþP0ĉr;nÞ=T=Z with the normalization

factor Z, since we assume that the dynamics is near
equilibrium. Here, the temperature T and the pressure P0

are determined by a given initial state through the total
energy and length. The inverse susceptibility matrix
element Λa;a0 is explicitly computable (Sec. VII. A in
Supplemental Material [33]). We note that Pûp;x ¼ ûp;x,
and hence we have Kr;a ¼ Ka;r ¼ 0. This property as
well as Λ determines the matrix structure of the diffusion
matrix D [33].
Computable expressions from the ensemble

equivalence.—Let us consider how to practically compute
the local microcanonical average on the local equilibrium
current term, hĴ a;xiuLM, and the projected current that
appears in the GK-like formula, PĴ a;x. From the expres-
sions of local microcanonical ensemble and the projection,
we can exactly find simple expressions for the component
a ¼ r: hĴ r;xiuLM ¼ −up;x, and PĴ r;x ¼ −ûp;x. Hence, the
main focus here is on hĴ b;xiuLM and PĴ b;x with the
components b ¼ p and ϵ. As we outline the underlying
physics below, we can expand these terms with respect to
coarse-grained quantities and variables:

hĴ b;xiuLM ∼Ab;aδua;x þ ð1=2ÞHb
a;a0δua;xδua0;x þ � � � ;

ðPĴ b;xÞ∼Ab;aδ ˆ̃ua;x þ ð1=2ÞHb
a;a0δ

ˆ̃ua;xδ ˆ̃ua0;x þ � � � ;
ð11Þ

where ˆ̃u is defined as ˆ̃ur;x ≔ ð1=lÞPxl
n¼ðx−1Þlþ1

rn and
ˆ̃ub0;x ≔ ûb0;x with b0 ¼ p, ϵ. In the above expansions, the
same subscripts are summed. The symbol δ… implies the
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deviation from the equilibrium value. The matrix elements
in A [36] and H are identical to coefficients in the local
equilibrium currents of the nonlinear FH in Ref. [17].
We now outline the underlying mechanism leading to the

above computable expressions. It is convenient to discuss
hĴ b;xiuLM first. Note that the coarse-grained currents are
defined at local sites in the coarse-graining block with the
length l, as depicted in Fig. 1, while the coarse-grained
variable û is a hydrodynamic variable for sufficiently large
l. We then employ the standard argument in statistical
physics; the microcanonical average can be accurately
replaced by the canonical average to calculate local
observables, as long as the size is large. Leaving the
detailed justification in Supplemental Material [33], we
can use the following ensemble equivalence for large l to
describe the zeroth order of the gradient expansion in terms
of the hydrodynamic motions

ρ̂LM ≅ ρ̂LG; ð12Þ

where ρ̂LG is the local Gibbs ensemble defined as

ρ̂LG ¼
Y
x

ρ̂ðxÞLG; ρ̂ðxÞLG ¼ e−
P

a¼r;p;ϵ
λa;xðtÞ ˆ̃ua;x=Zx: ð13Þ

Here, Zx is the normalization, and the parameter λa;x is a
conjugate parameter to the variable ˆ̃ua;x that is determined
through the condition h ˆ̃ua;xiLG ¼ ua;x, where h…iLG is an
average with the local Gibbs ensemble. This argument
systematically yields the expansion for the local equilib-
rium current in Eq. (11). Next, we can similarly discuss the
projected current that appears in the GK-like formula. We
note that hĴ a;xiuLM can be obtained in PĴ a;x by replacing a
phase-space-dependent variable ûa;x by a c-number value
ua;x [see definitions (7) and (9)]. This indicates that the
projected current is accurately computable with the ensem-
ble equivalence technique as above, which leads to the
expansion in Eq. (11) [33].
Numerical investigation.—In the remainder of this paper,

we perform a numerical calculation in order to see how
unique bare transport coefficients emerge. We use the
Fermi-Pasta-Ulam-Tsingou (FPUT) chain with the poten-
tial term:

VðrÞ ¼ ð1=2Þr2 þ ðk3=3Þr3 þ ðk4=4Þr4: ð14Þ

We remark that the hydrodynamics behavior has been
numerically checked in this model [20].
We show the typical behavior of the correlation function

Ca;a0ðtÞ. Here, we present the most important element, the
energy-energy current correlation function Cϵ;ϵðtÞ because
the standard energy current correlation for obtaining
macroscopic transport coefficient shows a power-law decay
at long times, resulting in a diverging heat conductivity. We

present the other elements in Supplemental Material [33].
In Fig. 2(a), we show the time dependence of Cϵ;ϵðtÞ for
many values of l for the system size N ¼ 215 and temper-
ature T ¼ 3.0 without pressure; the system parameters are
ðk3; k4Þ ¼ ð2.0; 1.0Þ [38]. For small l, we observe small
humps in the time domain. These humps occur every l=c
where c is the sound velocity (c ∼ 1.54) reflected from the
sound propagation [39]. As l increases, the amplitudes of
humps decrease and the overall functional structures
collapses onto the same curve, where finite values are seen
only at the small timescale. For comparison, we also show

the standard energy current correlation denoted by Cð0Þ
ϵ;ϵ ðtÞ,

which corresponds to Cϵ;ϵðtÞ with l ¼ 1 where the pro-
jection contains only the first order dropping the higher
orders. In Fig. 2(b), integration up to τ is shown for the
correlation functions in Fig. 2(a). The integration of
standard energy current correlation denoted by “standard
GK” is also presented, which shows a clear divergence. In
contrast, the integral of Cϵ;ϵðtÞ with finite l converges for
sufficiently large l. The main contribution in the saturated
integration is given from the short-time behavior in the
correlation.
In Fig. 3, we show the bare transport coefficients Kϵ;ϵ

computed via the GK-like formula for different coarse-
graining lengths l. Particularly, we consider three different
system sizes, N ¼ 29, 212, and 215, and compute the bare
transport coefficients for different l. The figure shows that

(a)

(b)

FIG. 2. Numerical demonstration of the GK-like formula (10)
for the element ðϵ; ϵÞ. Parameters: k3 ¼ 2.0, k4 ¼ 1.0, T ¼ 3.0,
and N ¼ 215. (a) The correlations as a function of time for

different l. Cð0Þ
ϵ;ϵ is the standard energy current correlation for

obtaining the macroscopic heat conductivity. (b) Integration of
the correlations up to τ. Standard GK (black dotted line) impliesR
τ
0 dtC

ð0Þ
ϵ;ϵ ðtÞ, which shows clear divergence. The integration for

finite l shows the convergence, where the saturated values are
plotted in Fig. 3.
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the same coarse-graining length gives the same values
even when the system sizes are different. For sufficiently
large coarse-graining length, the bare transport
coefficients are uniquely determined. We stress that the
order of limitation in the formula (10) is critical, i.e.,
Ka;a0 ¼ limτ→∞ limN→∞

R
τ
0 dsCa;a0ðsÞ with the condition

1 ≪ l ≪ N. Using the saturated functional form for
sufficiently large l, one can estimate the values of
bare transport coefficients ½Kp;p; Kp;ϵð¼−Kϵ;pÞ; Kϵ;ϵ�∼
ð0.2 × 10; 0.2 × 10−2; 0.1 × 10Þ.
Summary.—To summarize, we presented a microscopic

theory to derive fluctuating hydrodynamics in nonlinear
lattices. The formalism presented here is quite general and
it would be an interesting problem to compare the results of
the lattice system to fluid systems that have been studied so
far [40–44]. We hope that the microscopic theory presented
here can provide a resolution of some of the open issues in
low-dimensional transport [18] and useful information for
other applications [45], and also gives a possibility to
extend the FH to other classes of many-body systems such
as Refs. [46–48].
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