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I present a new approach for designing quantum error-correcting codes guaranteeing a physically natural
implementation of Clifford operations. Inspired by the scheme put forward by Gottesman, Kitaev, and
Preskill for encoding a qubit in an oscillator in which Clifford operations may be performed via Gaussian
unitaries, this approach yields new schemes for encoding a qubit in a large spin in which single-qubit
Clifford operations may be performed via spatial rotations. I construct all possible examples of such codes,
provide universal-gate-set implementations using quadratic angular-momentum Hamiltonians, and derive
criteria for when these codes exactly correct physically relevant errors.
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Great quantum error-correcting codes shield quantum
information from a noisy environment while simultane-
ously making it easily accessible to the programmer. The
very name of these structures betrays an emphasis on the
former goal, prioritizing the exact correction of the most
likely errors. In this Letter, I develop an alternative
approach to finding new codes that begins by ensuring
straightforward logical manipulation of the encoded quan-
tum information.
The encoding of a qubit in an oscillator described by

Gottesman, Kitaev, and Preskill [1] is an example of a great
error-correcting code. By construction, it protects against
unwanted shifts in position and momentum up to a certain
threshold. This protection also optimally corrects damping
errors [2], which are the most prevalent sources of noise in
the optical, superconducting, and mechanical systems for
which the code is designed. One can also straightforwardly
perform logical operations, since the full set of Clifford
operations—the largest set of unitary gates that can be
implemented easily—are realized by Hamiltonians at most
quadratic in position and momentum—the largest set of
Hamiltonians that are easy to engineer in an oscillator. For
these reasons, the Gottesman-Kitaev-Preskill (GKP) code
attracts considerable theoretical and experimental attention
[3–7].
Other physical systems deserve their own great error-

correction codes. While others have successfully adapted
the stabilizer approach of GKP codes to protect against
rotational errors [8], alternative single-system codes with
easy Cliffords remain unexplored. I design such codes by
starting with an algebra of physical Hamiltonians that are
natural to the system at hand. The construction guarantees
that a suitably large and discrete set of unitary gates—such
as logical Clifford operations—can be implemented using
only these natural physical interactions. As a consequence,
these codes naturally offer resilience against relevant noise
channels since environmental fluctuations typically take the

form of such natural Hamiltonians. This approach therefore
succeeds in allowing desired manipulations to be per-
formed in a straightforward way while suppressing
unwanted environmental interference.
To put this philosophy into practice, I demonstrate the

construction for large single spins, such as atomic nuclei.
Natural physical operations correspond to spatial rotations
of the spin, so I construct all qubit codes on which maximal
discrete sets of logical single-qubit unitaries can be
implemented via these spatial rotations. Within this family
of codes, I identify the examples that exactly correct
relevant experimental noise such as dephasing to first
order, including a code realizable in spin-7=2 systems such
as antimony nuclei, a promising experimental platform
[9,10]. The success of the construction in this particular
case builds confidence that the same approach will bear
fruit in additional physical systems.
Encoding qubits in spins.—The physics of a system

dictates which transformations are straightforward. For
large single spins the relevant physics is angular momen-
tum, and the easy transformations are generated by
Hamiltonians linear in the angular-momentum operators
Jx, Jy, and Jz. These Hamiltonians arise naturally in
practice, for example as the result of driving the spin with
a resonant ac magnetic field. The physical unitaries
generated by these Hamiltonians form a representation
of the special unitary group SU(2) on the spin’s Hilbert
space. The explicit map from an abstract SU(2) element to
its representative physical unitary is

D∶ expð−iθn̂ · σ=2Þ ↦ expð−iθn̂ · JÞ; ð1Þ

where σ is the vector of abstract Pauli matrices, J is the
vector of the spin’s angular-momentum operators, and n̂ is
a unit vector defining the axis of rotation. These represen-
tative unitaries are a significantly restricted subgroup of the
most general physical unitaries that can act on the large
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spin’s Hilbert space. Since these restricted unitaries are
straightforward to implement, the goal is to find a code-
space where the maximum number of logical unitaries
can be implemented by physically applying the SU(2)
representatives.
Any SU(2) representative that realizes a logical unitary

must map the codespace to itself. Because the SU(2)
representation for a large single spin is an irreducible
representation (irrep), the only subspaces mapped to
themselves by the full set of SU(2) representatives are
the trivial subspace containing only the zero vector and the
full Hilbert space of the spin. Neither of these alternatives is
a viable codespace. The consequence of this observation is
that one must limit oneself to a proper subset of SU(2)
representatives when searching for easy physical imple-
mentations of logical operations.
I consider two particularly relevant subsets that are

representations of finite subgroups of SU(2). The subgroup
to which I dedicate the most attention is known to quantum-
information scientists as the single-qubit Clifford group
[11], also called the binary octahedral group 2O [12][Ch. 7]
because it is the double cover of the rotational symmetry
group of the octahedron in the same way SU(2) is the
double cover of SO(3). The techniques used for 2O are
easily adapted to other finite subgroups of SU(2), and I
additionally comment on an example from the binary
icosahedral group 2I that offers an attractive experimental
implementation.
For the sake of clarity, I now specialize to the subgroup2O.

The advantage of restricting the set of physical operations to
the representatives of 2O is that these physical operations
map nontrivial subspaces to themselves, and these subspaces
provide candidate codespaces. Specifically, the desired qubit
codespaces are two-dimensional subspaces of the spin’s
Hilbert space that are mapped to themselves by 2O repre-
sentatives and onwhich nontrivial representative unitaries act
nontrivially (since the point is for these physical unitaries to
act as logical Clifford gates). In the language of representa-
tion theory, the codespaces should be faithful two-dimen-
sional irreps of 2O obtained by restricting the SU(2) irrep to
the 2O representatives.
The criteria for the desired codespaces having been

established, I now present the representation theory of 2O
needed to establish their existence.
Identifying binary-octahedral irreps.—The generators

for 2O, concretely realized as 2 × 2 special-unitary matri-
ces, are the phase and Hadamard gates

S ¼ exp

�
−i

π

2
ẑ · σ=2

�
¼ 1ffiffiffi

2
p ð1 − iσzÞ ð2Þ

H ¼ exp

�
−iπ

x̂þ ẑffiffiffi
2

p · σ=2

�
¼ 1ffiffiffi

2
p ð−iσx − iσzÞ: ð3Þ

The unusual phases are a consequence of the convention to
enforce the unit-determinant constraint of special unitaries.

Being a finite group of 48 elements, 2O possesses only a
finite number of irreps. As detailed in the Supplemental
Material [13], only two of these irreps satisfy the criteria of
being two dimensional and acting as logical Clifford gates.
Label these two irreps ϱ4 and ϱ5 in recognition of their place
among the other irreps of 2O. These irreps are inequivalent as
complex representations, ϱ4 straightforwardly mapping
S ↦ S and H ↦ H but ϱ5 mapping S ↦ −S and
H ↦ −H. This inequivalencemeans that codespaces cannot
be split between these two irreps, but since the projective
action of a unitaryU∶ρ ↦ UρU† is all that is relevant from a
quantum perspective, the two representations behave iden-
tically when considered separately.
Having identified the two relevant irreps, the task now is

to determine whether they appear in the decompositions of
the reducible 2O representations obtained by restricting the
SU(2) irreps to the 2O representatives. The decomposition
of an irrep of a group into irreps of a subgroup proceeds
according to what are called “branching rules” [16]. These
branching rules—worked out in the Supplemental Material
[13]—show that the irreps of interest do not appear at all in
integer spins (with odd-dimensional Hilbert spaces). The
multiplicities of these irreps in the half-integer spins
increase according to a pattern that repeats every 24
dimensions, presented in Table I. Spin 1=2 (dimension
2) contains the standard irrep of 2O, but given that this is
the entirety of the Hilbert space it does not provide a code.
Spin 3=2 (dimension 4) does not contain any of the irreps of
interest, being instead a four-dimensional irrep of 2O. For
spin 5=2 (dimension 6) and above, however, every half-
integer spin contains at least one two-dimensional code-
space on which 2O representatives perform logical Clifford
operations.

TABLE I. Multiplicities of the irreps of interest, ϱ4 and ϱ5, in
the reducible 2O representation derived from the even-dimen-
sional SU(2) irreps. Because these irreps only appear in even
dimensions and their multiplicities follow a pattern that repeats
every 24 dimensions, the dimension is presented in the form
24qþ 2p, where q is any non-negative integer and 0 ≤ p ≤ 11.

SU(2)-irrep dimension ϱ4 multiplicity ϱ5 multiplicity

24q 2q 2q
24qþ 2 2qþ 1 2q
24qþ 4 2q 2q
24qþ 6 2q 2qþ 1
24qþ 8 2qþ 1 2qþ 1
24qþ 10 2qþ 1 2q
24qþ 12 2qþ 1 2qþ 1
24qþ 14 2qþ 1 2qþ 2
24qþ 16 2qþ 1 2qþ 1
24qþ 18 2qþ 2 2qþ 1
24qþ 20 2qþ 2 2qþ 2
24qþ 22 2qþ 1 2qþ 2
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This result identifies how many codespaces exist in each
large single spin. The next step is to explicitly construct
these codes and determine their additional properties.
Constructing example codes.—Producing explicit code-

words proceeds by building projectorsPϱ onto irreps ϱ4 and
ϱ5 using standard expressions from representation theory
reproduced in the Supplemental Material [13]. The code-
word j0̄i is taken to be an element of the þ1 eigenspace of
the irrep Pauli σ̄z, where irrep Paulis are defined by

σ̄w ≔ Pϱ½i expð−iπJwÞ�Pϱ; w ∈ fx; y; zg: ð4Þ

To obtain j1̄i, simply apply σ̄x to j0̄i. If the irrep ϱ occurs
with multiplicity 1, then the þ1 eigenspace of σ̄z is one
dimensional, and no further choices are required. If the irrep
ϱ occurs with higher multiplicity, further properties of the
code can be engineered as explored in the discussion of the
error-correction conditions bymaking an appropriate choice
for j0̄i within the multidimensional þ1 eigenspace of σ̄z.
As an illustration, the logical 0 state for the code in spin

5=2—the smallest nontrivial example—is

j0̄i ¼
ffiffiffi
1

6

r ���� 52 ;
5

2

�
−

ffiffiffi
5

6

r ����52 ;−
3

2

�
: ð5Þ

More explicit codes are presented in the Supplemental
Material [13].
Computing with encoded qubits.—Employing these

codes in the service of quantum computation requires
the ability to do more than single-qubit logical Clifford
operations. I focus now on the following minimal set of
logical operations required for universal quantum compu-
tation:

fPj0̄i;Mσ̄z ; S̄; H̄;CZg ∪ fT̄g; ð6Þ

where the bars denote logical operators, P denotes state
preparation, and M denotes operator measurement. In this
set, the single-qubit Cliffords are generated by S̄ and H̄,
multiqubit Cliffords are obtained by the addition of CZ, and
T̄ supplies a non-Clifford gate. Since all logical unitaries
can be efficiently approximated to arbitrary precision by
these operations, the ability to prepare at least one logical
state (here chosen to be Pj0̄i) and perform at least one
measurement (here chosen to be Mσ̄z) results in universal
quantum computation.
By construction, these codes have Pauli and single-qubit

Clifford operations realizable with Hamiltonians linear in
angular-momentum operators [the SU(2) representation].
This construction gives the codes special structure in the Jz
basis, detailed in the Supplemental Material [13], which
additionally provides explicit recipes for measuring logical
Paulis, performing logical CZ gates between two encoded
qubits, and performing logical T̄ gates. The strategy for

performing a controlled-Z gate (CZ) is similar to that used
for rotation-symmetric bosonic codes [17]. In the bosonic
case, a cross-Kerr interaction a†a ⊗ a†a generates the
CROT gate used to perform CZ on the codespaces. In the
spin case, the analogous Jz ⊗ Jz interaction performs
the CZ gate (up to individual Jz corrections). As worked
out in the Supplemental Material [13], the CZ gate takes the
following form:

CZ ¼ exp

�
i
π

2
Jz ⊗ 1

�
exp

�
i
π

2
1 ⊗ Jz

�

× expð−iπ Jz ⊗ JzÞ: ð7Þ

Again, like in rotation-symmetric bosonic codes, a
slightly more complicated single-system Hamiltonian
yields a more exotic gate. A self-Kerr interaction ða†aÞ2
allows one to perform an S̄ gate on the bosonic codes. The
2O-irrep codes already have an S̄ gate using linear
Hamiltonians, so adding the analogous J2z interaction
allows one to perform a T̄ gate (again up to a Jz correction).
The T̄ gate so obtained, as worked out in the Supplemental
Material [13], takes the following forms for the two
different j0̄i supports:

T̄ ¼
�
expð−i π

4
JzÞ expð−i π4 J2zÞ m0 ¼ 1

2

expð−i 5π
4
JzÞ expð−i π4 J2zÞ m0 ¼ − 3

2
:

ð8Þ

The Hamiltonians required for CZ and T̄ gates are
admittedly more complicated than those required for
Clifford operations. Experiments routinely modulate quad-
rupolar terms such as needed for T̄ [10], though it may be
that a different technique will ultimately be required, as
happened to be the case for the original T̄-gate proposal for
GKP [18].
Destructive measurement in the σ̄z eigenbasis is possible

via projecting onto the Jz eigenbasis. Since any Jz
eigenstate has nonzero overlap with at most one logical
computational-basis state—as explained in the
Supplemental Material [13]—each possible outcome will
unambiguously indicate a σ̄z eigenstate.
Because of the octahedral symmetry of these codes, all

the above constructions hold when replacing z with x or y.
Correcting errors.—As alluded to in the introduction,

the fact that only a finite subset of SU(2) representatives
preserve the codespace suggests that these codes might
correct errors taking the form of small random SU(2)
representatives in much the same way that GKP codes
protect from small random displacements. Such noise is
generated by the Lindblad master equation

dρ ¼ γdt
X

w∈fx;y;zg

�
JwρJw −

1

2
J2wρ −

1

2
ρJ2w

�
; ð9Þ
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where γ is the depolarizing rate. For γdt ≪ 1, the following
Kraus operators map ρ ↦ ρþ dρ:

E0 ¼ 1 −
1

2
γ dtkJk2 ¼

�
1 −

jðjþ 1Þ
2

γdt
�
1 ð10Þ

Ew ¼
ffiffiffiffiffiffiffi
γdt

p
Jw; w ∈ fx; y; zg: ð11Þ

Correcting the errors corresponding to these Kraus operators
is equivalent to correcting random rotations to lowest order.
In spin systems it may be more natural to think of the

dominant noise sources in terms of T2-type dephasing
errors Jz, T1-type relaxation errors J−, and thermalization
errors Jþ. Since these error operators are linear combina-
tions of the random-rotation error operators, correcting
either family of errors is equivalent. This mirrors the
situation in GKP codes, whose manifest protection of
random-displacement errors extends to relaxation errors
as well [2].
The elements of the quantum-error-correction matrix

indicate whether the codes exactly correct such errors. The
exact-correction condition [19] is

hājEjEkjb̄i ¼ Cjkδab: ð12Þ

Because of the octahedral symmetry of the codes, the only
independent EjEk pairs are J2z , JxJy, and Jz. As detailed in
the Supplemental Material [13], these conditions are
satisfied if and only if h0̄jJzj0̄i ¼ 0.
In general it is not the case that h0̄jJzj0̄i ¼ 0. For

example, for the spin-5=2 code in Eq. (5), j0̄i has a
nonzero Jz expectation value. However, if an irrep appears
with higher multiplicity, and the projection of Jz onto the
þ1 eigenspace of σ̄z has both positive and negative
eigenvalues (or a 0 eigenvalue), then a propitious choice
for j0̄i ensures that the quantum-error-correction criteria are
exactly satisfied for these first-order rotation errors. The
first spin in which one of the irreps appears with higher
multiplicity is spin 13=2. The two eigenvalues of Jz
projected onto the þ1 eigenspace of σ̄z are −13=6 and
5=2, with associated eigenvectors j0̄−ð13=6Þi and j0̄ð5=2Þi. To
get a codeword with zero Jz expectation value, one takes
linear combinations of the following form:

j0̄ϕi ¼
ffiffiffiffiffiffiffiffi
105

p

14
j0̄−ð13=6Þi þ eiϕ

ffiffiffiffiffi
91

p

14
j0̄ð5=2Þi: ð13Þ

Considerations for first-order correction of random-rotation
errors make no distinction between different values of the
phase ϕ, leaving a free parameter that may be further
optimized over.
While satisfying the error-correction conditions guaran-

tees the existence of an error-correction procedure, the
highly noncommutative nature of fJx; Jy; Jzg errors makes
the definition of physically natural commuting stabilizers

difficult, though one can use the structure of the support in
the angular-momentum basis to build noncommuting
projectors that are analogous to stabilizers. The construc-
tion of practical error-correction procedures using such
elements is an ongoing project.
Implementing in experiments.—Since nuclear spins are

obvious host systems for these codes, it would be nice to
have examples with good error-correcting properties in a
Hilbert space of dimension at most 10 (corresponding to the
largest available nuclei of spin 9=2). As just demonstrated,
the 2O codes require a larger Hilbert space to reliably
correct errors. This motivates considering an alternative
maximal discrete subgroup of SU(2), the binary icosahedral
group 2I, consisting of gates corresponding to the sym-
metries of a regular icosahedron. Using the same tools
developed for 2O, one finds a two-dimensional 2I irrep in
spin 7=2 that allows for the correction of random-rotation
errors to first order:

j0̄i ¼
ffiffiffiffiffi
3

10

r ���� 72 ;
7

2

�
þ

ffiffiffiffiffi
7

10

r ����72 ;−
3

2

�
: ð14Þ

Spin 7=2 is the smallest Hilbert space in which one can
correct these errors, making this code analogous to a perfect
block code. Additionally, the nuclear spin of antimony
provides an ideal physical realization of a spin-7=2 system
over which impressive experimental control has been
obtained [10]. Figure 1 depicts the Wigner functions for
this code, defined via a self-dual kernel obeying the
Stratonovitch-Weyl postulates for SU(2) [20,21]. See the
Supplemental Material [13] for more details.
Comparing to existing codes.—These spin codes are

unique among existing codes in protecting from random
SU(2) rotations within an irrep of SU(2). There are some
analogous examples worth mentioning, however. The
minimal qudit codes of [22] protect against a discrete set
of finite Jz-rotation errors but are “classical” in the sense
that they offer no protection against Jz or Jy rotations. The
qudit analogs of the GKP code [1,23] add protection
against some cyclic permutations of the Jz basis elements.
Neither of these codes perform well against first-order
rotation noise, however, as illustrated by some numerical
experiments in the Supplemental Material [13]. Another
family of codes designed to protect against rotation errors
are molecular codes [8]. In their current formulation, these
codes are built in spaces that are direct sums of SU(2) irreps
and additionally protect against shifts in total angular

FIG. 1. Wigner functions for j0̄i, j1̄i, and the codespace
projector for the icosahedral code in spin 7=2.
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momentum, making direct comparison difficult. Note
that decoherence-free subspaces and noiseless subsystems
for random-rotation errors do not exist in the Hilbert
spaces of large single spins since these errors generate
an irrep.
Generalizing to other systems.—The construction pre-

sented for spin codes exemplifies a more general procedure.
One can replace the representation of the Lie algebra suð2Þ
given by angular-momentum operators with any represen-
tation of a Lie algebra g given by physically natural
Hamiltonians on a Hilbert space. Exponentiating these
Hamiltonians will generate easily implementable unitaries
forming a representation of a Lie group G analogous to SU
(2). One will then want to consider a discrete subgroup
K ⊂ G just as I considered 2O ⊂ SUð2Þ. The representation
of G restricts to a representation of K, and the small-
dimensional irreps of K into which this representation
decomposes form the candidate codespaces. At this point,
one must tailor the procedure to the particular set of errors
and the particular discrete subgroup K. When considering
random rotations, the error-correction conditions were
greatly simplified because the noise was generated by
Lindblad operators taken from a subalgebra of suð2Þ and
2Ocontained a rich set of symmetries of this subalgebra.One
expects similar simplifications to take place in the more
general case when analogous structure is present. Some
obvious candidate Lie-algebra representations are those
given by quadratic bosonic and fermionic Hamiltonians.
Pursuing the bosonic Hamiltonians brings the prospect of
finding additional GKP-like codes in oscillators, though the
noncompact nature of the Gaussian unitaries they generate
presents qualitatively different challenges than encountered
in the SU(2) case. Quadratic fermionic Hamiltonians gen-
erate compact Lie groups [[24] Thm. 13.1], and so provide an
arena for a much more straightforward application of the
techniques presented here.
Conclusion.—In this Letter, I have constructed all

single-spin qubit codes admitting Cliffords via SU(2)
unitaries. These codes exist for all half-integer spins
larger than 3=2 and admit the entangling gate CZ and
the non-Clifford gate T̄ via Hamiltonians quadratic in
angular-momentum operators. I have also exhibited codes
in spins as small as 7=2 that exactly protect against
random-rotation errors to first order. In addition to
showing how to build better qubits out of large spins,
these achievements illustrate the power of the finite-
group-representation approach. Adapting these tech-
niques to systems with different algebras of natural
Hamiltonians offers a new path by which to discover
useful quantum-error-correcting codes.
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