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We study a reference model in theoretical ecology, the disordered Lotka-Volterra model for ecological
communities, in the presence of finite demographic noise. Our theoretical analysis, valid for symmetric
interactions, shows that for sufficiently heterogeneous interactions and low demographic noise the system
displays a multiple equilibria phase, which we fully characterize. In particular, we show that in this phase
the number of locally stable equilibria is exponential in the number of species. Upon further decreasing the
demographic noise, we unveil the presence of a second transition like the so-called “Gardner” transition to a
marginally stable phase similar to that observed in the jamming of amorphous materials. We confirm and
complement our analytical results by numerical simulations. Furthermore, we extend their relevance by
showing that they hold for other interacting random dynamical systems such as the random replicant
model. Finally, we discuss their extension to the case of asymmetric couplings.
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Lotka-Volterra equations describing the dynamics of
interacting species are key to theoretical studies in ecology,
genetics, evolution, and economy [1–6]. Cases in which the
number of species is very large are becoming of general
interest in disparate fields such as ecology and biology, e.g.,
for bacteria communities [7,8], and economics, where
many agents trade and interact simultaneously in financial
markets and in complex economic systems [9,10].
The theoretical framework used in the past for a small

number of species is mainly based on the theory of
dynamical systems [11–16]. When the number of ordinary
differential equations associated with the Lotka-Volterra
(LV) model becomes very large, i.e., for many species,
methods based on statistical physics are ideally suited.
Indeed, several authors have recently investigated different
aspects of community ecology—such as properties of
equilibria, endogeneous dynamical fluctuations, and bio-
diversity—using ideas and concepts rooted in statistical
physics of disordered systems [5,17–27]. Similar investi-
gations have been also performed for economic systems
[28]. Dealing with a large number of interacting species can
actually become a welcome new ingredient conceptually
and methodologically. In fact, qualitatively new collective
behaviors, classified into “phases,” can emerge. Also, as it
happens in physics, such phases are not tied to the specific
model they come from; instead, they characterize whole
classes of systems in a generic way, potentially including
natural systems [29]. From this perspective, it is interesting

to ask which kind of different collective behaviors arise for
LVmodels in the limit of many interacting species and what
are their main properties [19,20]. These questions, which
have started to attract a lot of attention recently, tie inwith the
analysis of the properties of their equilibria [30–32].
Here, we focus on the disordered Lotka-Volterra model

of many interacting species, which is a representative
model of a well-mixed community ecology [33] that can
be mapped or related to models used in evolutionary game
theory and for economic systems [28,34–37]. We consider
the case of symmetric interactions and small immigration
that, allowing for an appropriate interplay with demo-
graphic noise, ensures that all species are present, and work
out the phase diagram as a function of the degree of
heterogeneity in the interactions and the strength of the
demographic noise. Compared to previous works
[5,19,20,38], adding demographic noise not only allows
us to obtain a more general picture but also to fully
characterize the phases and connect their properties to
the ones of equilibria. In particular, we shall show that the
number of locally stable equilibria in the LV model is
exponential in the system size and their organization in
configuration space follows general principles found for
models of mean-field spin glasses. Our findings, although
obtained for symmetric interactions, provide a useful
starting point to analyze the nonsymmetric case, as we
shall demonstrate by drawing general conclusions on
properties of equilibria in the case of mild asymmetry.
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The disordered Lotka-Volterra model for ecological
communities [5,19] with random interactions αij between
species is defined by this equation:

dNi

dt
¼ Ni

�
1 − Ni −

X
j;ðj≠iÞ

αijNj

�
þ ηiðtÞ: ð1Þ

The elements of the random matrix αij are independent and
identically distributed variables such that, for i < j,

mean½αij� ¼ μ=S var½αij� ¼ σ2=S ð2Þ
with αij ¼ αji, as we focus on the symmetric case (i runs
from 1 to the total number of species S).NiðtÞ is the relative
abundance of species i at time t, meaning that the
population is normalized with respect to the total number
of individuals Nind that would be present in the absence of
interactions; ηiðtÞ is a Gaussian noise with zero mean
and covariance hηiðtÞηjðt0Þi ¼ 2TNiðtÞδijδðt − t0Þ, where
T ¼ ð1=NindÞ. This multiplicative noise term, for which we
follow Ito’s convention, allows us to include the effect of
the demographic noise in a continuous setting [39–41],
which is the larger the global population, the smaller the
strength T of the demographic noise.
Immigration from the mainland is modeled by a reflect-

ing wall for the dynamics at a cutoff value for the species
abundances Nc ¼ λ; this is more practical for simulations
than the usual way of adding a λ in the rhs of Eq. (1) (see
the Supplemental Material [42], Sections VI and VII, for
more details). As shown in [20], the stochastic process
induced by Eq. (1) admits an equilibriumlike stationary
Boltzmann distribution with associated temperature T:

PðfNigÞ ¼ exp

�
−
HðfNigÞ

T

�
; ð3Þ

where in this specific case the Hamiltonian is

H ¼ −
X
i

�
Ni −

N2
i

2

�
þ
X
i<j

αijNiNj

þ
X
i

½T lnNi − ln θðNi − λÞ�: ð4Þ

The before-last term is due to the demographic noise and the
last one to the reflecting wall, which leads to a lower
immigration cutoff at Ni ¼ λ [θðxÞ is the Heaviside func-
tion]. By taking advantage of this mapping to an equilibrium
statistical mechanics problem and by using theoretical
methods developed for disordered systems, we obtain the
properties of the stationary states and the equilibria of the LV
model from the analysis of the equilibrium states and the
local minima of the energy function H. Our theoretical
framework is based on the replica method [43], which
represents a well-established technique to obtain exact
equations for the order parameters in disordered systems.
The working strategy consists in computing the replicated
free energy f ¼ −limS→∞ðT=SÞlnZ by writing down the

disordered average of the replicated partition functionZn. In
this setting, one has to study n distinct copies of the original
system (the replicas) and eventually take the analytical
continuation n → 0. The computation is described in full
detail in the Supplemental Material (SM).
Among the most important results is the existence of

three distinct phases for the LV model in presence of
demographic noise and small but nonzero immigration, as
shown in Fig. 1 (we focus on λ ¼ 10−2; similar results are
obtained for smaller values of λ). We find no sensitive
dependence on the average interaction parameter, so the
phase diagram has been obtained at fixed value μ ¼ 10.
For large enough demographic noise (corresponding to

high temperature), we find that there is a single equilib-
rium phase, i.e., the noise is so strong that the interactions
within species do not play an important role and for any
initial condition the system relaxes toward a unique
stationary state with fluctuating equilibrium dynamics.
When the strength of the demographic noise decreases,
multiple states emerge. This outcome offers a useful
picture in the study of microbial communities provided
that sufficiently large species abundances are taken into
account [62–64].
We can study this transition by analyzing the stability of

the thermodynamic high-temperature phase. This is per-
formed by analyzing its free-energy Hessian matrixH. The
point at which the lowest eigenvalue (the so-called “repli-
con” eigenvalue in the replica framework) of H reaches
zero signals the limit of stability of the high-temperature
phase through a continuous second-order phase transition
and the emergence of multiple equilibria.

FIG. 1. Phase diagram showing the strength of the demographic
noise T as a function of the degree of heterogeneity σ at fixed
μ ¼ 10 and selected value of the cutoff Nc ¼ 10−2. Upon
decreasing the noise, three different phases can be detected:
(i) a single equilibrium phase, (ii) a multiple equilibria regime
between the light blue and the orange lines, and (iii) a Gardner
phase, which turns out to be characterized by a hierarchical
organization of the equilibria in the free-energy landscape.
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Within the replica method that we used here, the
appearance of a zero replicon mode corresponds to the
breaking of replica symmetry. This condition leads to an
equation for the transition line that corresponds to the blue
curve in Fig. 1:

λR ¼ ðβσÞ2½1 − ðβσÞ2ðhN2
i i − hNii2Þ2� ¼ 0; ð5Þ

where β ¼ 1=T. The average h·i is the thermodynamics
average taken over the effective Hamiltonian [Eq. (4)],
while ·̄ denotes the average over the quenched disorder
associated with the random interactions (i is a dummy
index since statistically all species are equivalent after
average over the interactions). Physically, the condition
above can be shown to correspond to a diverging response
function [19,20] and is a signature of the system being at
the edge of stability, namely at a “critical point” in the
parameter space [65].
Below the blue curve, there exist multiple states.

Which one is reached dynamically depends on the initial
condition. Such states correspond to dynamically fluctuat-
ing equilibria that are locally stable to perturbations and
that have typically an overlap in configuration space
given by q0 ¼ ð1=SÞPihNiiαhNiiβ, where α and β denote
the average within two generic states α and β. One can
similarly define the intrastate overlap q1 ¼ ð1=SÞPihNii2α.
See Fig. 2 for a pictorial representation of these two
quantities and the organization of equilibria in phase space.
This is (in the replica jargon) the so-called one-step replica
symmetry breaking phase (1RSB). In order to characterize
the properties of this phase of the LV model, we have
computed the number of states, and hence of equilibria,
using methods developed for structural glasses [56]. More
specifically, we have computed the complexity Σ (see
Section IV of the SM for details), which is defined as
the logarithm of the number of equilibria with a given free-
energy density f normalized by the number of species S.
This allows us to show that the number of equilibria below
the blue line in Fig. 1 is exponential in S, i.e., there is a
strictly positive complexity Σ. This outcome turns out to be
particularly timely in light of ecological resilience and

stability landscape concepts, notably in relation to recent
findings on microbial communities [67–69].
When decreasing further the demographic noise, the

heterogeneity in the interactions becomes even more
important and a second phase transition takes place. In
order to locate it, we repeat exactly the same procedure as
for the single equilibrium phase but now within one of the
typical states with a given free-energy f [70]. The compu-
tation is more involved: it corresponds to analyzing the
stability of the 1RSB ansatz (all technical details of the
calculation are reported in the SM).
The critical temperature that results from the equation

above leads to the orange line in Fig. 1. Crossing this line
results in a fragmentation of each state into a fractal
structure of sub-basins [71] (see the landscape on the
bottom in Fig. 1): each state becomes a metabasin that
contains many equilibria, all of them marginally stable, i.e.,
poised at the edge of stability [20], and organized in
configuration space in a hierarchical way, as in the case
of mean-field spin glasses [43]. This phase, which is called
“Gardner,” plays an important role in the physics of
jamming and amorphous materials [72,73]. Our results
unveil its relevance in theoretical ecology by showing that it
describes the organization of equilibria in the symmetric
disordered LVmodel at low enough demographic noise and
for highly heterogeneous couplings.
We now present numerical simulation results that con-

firm and complement our analytical study. Simulating LV
dynamics in the presence of demographic noise is a
challenging algorithmic task. In order to reach long times,
we have used and generalized a sophisticated method
introduced in the context of directed percolation [61]
(see Section VII of the SM for details). The initial
condition is set by drawing independently each species
abundance in [0, 1].
There are three sources of randomness for a given

sample: the interactions, the initial conditions, and the
demographic noise. In the following, we obtain numeri-
cally the average correlation function defined by

E½NðtÞNðt0Þ� ¼ 1

SNsample

XS
i¼1

XNsample

r¼1

Nr
i ðtÞNr

i ðt0Þ; ð6Þ

where E½X� stands for the average over all those sources of
randomness. If both the system size and the sampling set
are sufficiently large (S ≫ 1 and Nsample ≫ 1), it can be
shown that the stochastic process converges in law [57].
We show results for S ∼ 500 and Nsample ∼ 50. We have
verified that these values are large enough to guarantee
that there is no ðS;NsampleÞ dependency for the correlation
functions. We find that in the high-temperature phase a
time translationally invariant state is reached after a finite
timescale twait:

FIG. 2. Cartoon of the landscape in the 1RSB ansatz. The
parameters q0 and q1, which can be exactly obtained by solving
saddle-point equations, are respectively associated with the size
of the largest basin and the innermost basin (large overlaps are
associated with small basins).
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∀ t ≥ t0 > twait E½NðtÞNðt0Þ� ¼ Cðt; t0Þ ≃ Cðt − t0Þ: ð7Þ

This convergence to a time translationally invariant re-
gime is shown in Fig. 3. The long-time limit of Cðt − t0Þ is
the overlap between two generic configurations belonging
to the single equilibrium state: the dashed line in Fig. 3 is
the analytical prediction for limt−t0→∞ Cðt − t0Þ, which is
in perfect agreement with the numerics. We have also
checked that this agreement holds upon varying T, and for
other observables the results are reported in the SM,
Section V. D (see Fig. 6). From the time dependence of
Cðt − t0Þ, one can estimate the typical timescale character-
izing dynamical fluctuations within the single equilibrium
phase. Formally, we define τdecorrel by the identity

CðτdecorrelÞ − Cð∞Þ
½Cð0Þ − Cð∞Þ� ¼ 0.3; ð8Þ

where 0.3 is an arbitrary value set for the sake of the
definition. In Fig. 3, we also plot τdecorrel as a function of
ðT − T1RSBÞ, where T1RSB is the critical value of T at
which the single equilibrium phase becomes unstable
(blue line in Fig. 1). We find that the thermodynamic
instability is accompanied by a dynamical transition at
which τdecorrel diverges as a power law with an exponent
close to 0.5 (see the inset plot of Fig. 3).
For small demographic noise, i.e., when T is below the

blue line of Fig. 1, previous results on the dynamics of
mean-field spin glasses [74–76] suggest that the LV model
should never reach an equilibrium stationary state; instead
it should display “aging” [77,78]. In fact, one expects that,
among the very many equilibria, the dynamics starting from
high-temperature-like initial conditions falls in the basin of
attraction of the most numerous and marginally stable

equilibria and displays aging behavior. This is indeed what
we report in Fig. 4, which shows that the older the system is,
the longer it takes to decorrelate. The landscape interpre-
tation of this phenomenon is that the system approaches at
long times a part of configuration space with many margin-
ally stable equilibria. This leads to aging because the longer
the time, the smaller the fraction of unstable directions to
move, hence the slowing down of the dynamics. The
exploration never stops, however, and eventually the system
never settles down in any equilibrium [79–81]. The two
dashed lines in Fig. 4 correspond to our analytical prediction
for the intrastate and the interstate overlaps of themarginally
stable equilibria. The agreement is satisfactory, but larger
times would be needed to fully confirm it.
Our characterization of the phases and the dynamics of

the LV model has important consequences for related
systems, in particular the so-called random replicant
models (RRMs), which consist of an ensemble of replicants
evolving according to random interactions. Given their
numerous applications in biology, optimization problems
[34,82], and evolutionary game theory [83,84], RRMs still
attract great theoretical interest. The RRM, which was
introduced in [34] and further studied in [38], is remarkably
similar to the disordered LV model we studied. In the case
of symmetric interactions, one can map the RRM problem
onto a model described by the following Hamiltonian:

HR ¼ −
XS
i<j¼1

Jijxixj − a
XS
i¼1

x2i ; ð9Þ

where xi=S is the concentration of the ith family in the
species pool subject to the global constraint

P
i xi ¼ S for

all xi ≥ 0. The couplings Jij are independent identically

FIG. 3. Correlation Cðt; t0Þ as a function of t − t0 in the one-
equilibrium phase for different t0: t0 ¼ 1 (blue), 10 (orange), 100
(green), 500 (red). The inset shows the decorrelation time versus
ðT − T1RSBÞ in log-log scale. The blue points correspond to
numerical data, while the dashed red line is a fit.

FIG. 4. Rescaled correlation as a function of ðt − t0Þ, for
different age t0 of the system, showing aging dynamics.
The dashed black and red lines correspond respectively to the
theoretical predictions for q1 and q0, both rescaled by the
analytical prediction Cðt0; t0Þ≡ qd.
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distributed Gaussian variables with variance J2=S. With an
appropriate rescaling of the interaction matrix, we can show
that the average interaction term μ for LV plays the same
role as the Lagrange multiplier, which is introduced in the
RRM to enforce the sum of all concentrations to be fixed.
The main difference with respect to Eq. (4) is the absence of
the logarithmic term. Our analysis can be fully extended to
the RRM, as we show in the SM, Section III. The main
result is that the three phases we found for the LVmodel are
present also for the RRM and organized in a phase diagram
(see Fig. 4 in the SM) that is remarkably similar to the one
in Fig. 1. This strengthens the generality of our results and
clarifies the nature of the glassy phase of the RRM that was
first investigated in [38].
Let us finally discuss how we expect our results to

change if the interactions contain a small random asym-
metric component. The multiple-basins structure associated
with the 1RSB phase should not be affected because its
basins correspond to stable stationary states, and a small
nonconservative random force should not destabilize them
[85]. On the contrary, the fractal structure (characteristic of
the Gardner phase) and the decomposition into sub-basins
are expected to be wiped out because of the marginal
stability of the equilibria associated with it [32,46,47]. In
the absence of demographic noise, one therefore expects a
single equilibrium at small σ, which is replaced by an
exponential number of chaotic attractors at large σ. The
demographic noise adds additional dynamical fluctuations
to these multiple equilibria and eventually makes them
merge in a single one, thus leading to a phase diagram
similar to Fig. 1 but with only the blue line and two phases
(single and multiple equilibria).
In conclusion, we have unveiled a complex and rich

structure for the organization of equilibria in a central
model for ecological communities. Our results, supported
by dynamic simulations, highlight the relevance of multiple
equilibria phases for the dynamics of many strongly
interacting species for which one can also imagine repro-
ducing controlled, experimental setups [63,86,87].
Moreover, our findings clarify the glassy nature of the
equilibria previously studied in [5,19,20,22,88]. As we
have shown, our results carry out to more general contexts,
and we expect they will be directly relevant for evolu-
tionary game theory models such as the ones discussed in
[89]. Extensions to go beyond the well-mixed assumption
and to include space effects are certainly worthy of future
investigations [90].
We expect that the collective dynamical behaviors—the

phases—found in this work go beyond the LV model itself
and may play an important role in a variety of contexts
from biology to economics, which can be modeled
by high-dimensional dynamical systems with random
couplings.

We acknowledge stimulating discussions with G. Bunin,
S. De Monte, and G. Parisi on this subject. This work was
supported by the Simons Foundation grant on “Cracking
the Glass Problem” (# 454935 Giulio Biroli).
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