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Dielectric particles in weakly conducting fluids rotate spontaneously when subject to strong electric
fields. Such Quincke rotation near a plane electrode leads to particle translation that enables physical
models of active matter. In this Letter, we show that Quincke rollers can also exhibit oscillatory dynamics,
whereby particles move back and forth about a fixed location. We explain how oscillations arise for micron-
scale particles commensurate with the thickness of a field-induced boundary layer in the nonpolar
electrolyte. This work enables the design of colloidal oscillators.
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Solid particles in weakly conducting fluids have long
been known to rotate spontaneously when subject to static
electric fields above a critical magnitude [1]. So-called
Quincke rotation derives from the field-induced charging of
the particle surface to create an unstable dipolar contribu-
tion that relaxes by mechanical rotation in the external field.
Rotation near a solid boundary enables particle propulsion
underlying recent experimental models of active matter
[2–4]. The Quincke instability is well described by the
Taylor-Melcher leaky dielectric model, which treats the
fluid as a homogeneous Ohmic conductor containing no
free charge [5,6]. For nonpolar electrolytes [7–9] subject to
strong fields, the validity of this assumption requires the
rapid generation and recombination of charge carriers
within the fluid. To maintain an electric current, carriers
must be generated within fluid volumes of finite thickness
near system boundaries. Within such boundary layers, the
assumption of the leaky dielectric model breaks down, and
new types of electrohydrodynamic phenomena can arise.
For a symmetric binary electrolyte, the boundary layer

thickness can be approximated as l ¼ eμEe=krno, where e,
μ, and no are the charge, mobility, and density of carriers,
respectively; Ee is the external field strength; and kr is a
rate constant for ion recombination. Carriers are removed
from the boundary region at a rate equal to the flux eμnoEe.
At steady state, this flux is balanced by carrier generation
within the boundary layer, which occurs at a rate equal to
that of carrier recombination in the bulk krn2o. For nonpolar
solutions of sodium dioctyl sulfosuccinate (AOT) surfac-
tant commonly used in the study of Quincke rollers,
external fields are expected to generate boundary layers
as large as 10 μm—comparable to the size of colloidal
particles.
In this Letter, we investigate the dynamics of particles

within such field-induced boundary layers and observe
oscillatory motions that are not predicted by the leaky

dielectric model. Our experiments are based on polystyrene
spheres dispersed in AOT-hexadecane solutions above a
planar electrode. The application of an electric field above a
critical magnitude causes the particles to roll steadily across
the electrode surface [2]. On further increasing the field
strength, however, the particles begin to oscillate back and
forth with an amplitude comparable to their diameter. This
behavior was briefly noted in previous work [10]; however,
the mechanism underlying particle oscillations was not
investigated or explained.
Owing to their small size, the oscillations cannot be

attributed to inertial effects. Moreover, simulations based
on the leaky dielectric model are unable to reproduce the
observed oscillations—even when accounting for the
proximal electrode. By relaxing model assumptions to
account for the finite rates of ion formation and recombi-
nation, we show how Quincke oscillations can arise for
particles comparable in size to the boundary layer thick-
ness. Oscillations derive from new couplings among the
charge moments on the particle surface introduced by
asymmetries in the rates of charging within the boundary
layer. Consistent with this mechanism, we demonstrate that
oscillations are not observed for larger particles that extend
beyond the boundary layer or for particles moving within
the bulk electrolyte. Together, these results enable the
design of colloidal oscillators and highlight the significance
of electric boundary layers on the active motions of
particles and their ensembles.
In our experiments, polystyrene spheres are dispersed at

low volume fraction in hexadecane solutions of AOT
surfactant. The suspension is sandwiched between parallel
electrodes, where the particles sediment under gravity to
the lower boundary [Fig. 1(a)]. On application of an
external field Ee, the particles move on the electrode
surface as captured by high-speed video microscopy.
Depending on the strength of the applied field, we observe
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three types of particle motion termed stationary, rolling,
and oscillating [Figs. 1(b) and 1(c)].
For external fields weaker than a critical value, particles

remain motionless [Fig. 1(b), left]. Above this value,
particles roll along the electrode in random directions
perpendicular to the applied field with a constant speed
[Fig 1(b), middle]. Further increasing the field, we observe
a second transition whereby particles cease to roll and

instead oscillate back and forth [Fig. 1(b), right]. The time-
averaged particle speed increases with field strength before
slowing abruptly at the onset of oscillations [Fig. 1(c),
markers]. Accompanying this transition from rolling to
oscillating, temporal variations in particle speed increase in
magnitude from zero to a finite value [Fig. 1(c), error bars].
In addition to these descriptive statistics, we use Bayesian
model selection [12,13] to classify each particle trajectory
based on competing models for stationary, rolling, and
oscillating dynamics [Fig. 1(c), colors; see Supplemental
Material [11], Sec. 2].
The observed transition from stationary to rolling agrees

qualitatively with predictions of the leaky dielectric model
for a spherical particle immersed in an unbounded fluid
with respective permittivities εp, εf and conductivities σp,
σf. The model predicts that the stationary solution becomes
unstable when the external field strength exceeds the
critical value [14–16]

Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2η

εfτmwðεcm − σcmÞ

s

; ð1Þ

where η is the fluid viscosity, τmw¼ðεpþ2εfÞ=ðσpþ2σfÞ
is the Maxwell-Wagner time, and xcm¼ðxp−xfÞ=ðxpþ2xfÞ
for x ¼ ε, σ are the Claussius-Mossotti factors character-
izing the high- and low-frequency polarizability of the
sphere, respectively. Above this field, the angular velocity
and thereby the rolling speed U increase with increasing
field strength as U ¼ ðκa=τmwÞ½ðEe=EcÞ2 − 1�1=2, where
κ ≤ 1 is a dimensionless coefficient characterizing the
strength of rotation-translation coupling [Fig. 1(c), solid
curve]. Consistent with this model, the critical field strength
is independent of particle radius a but increases with
increasing AOT concentration, which increases the con-
ductivity of the fluid (Supplemental Material [11], Secs. 3.1
and 3.2).
Near the transition from rolling to oscillating, particles

exhibit a mixture of intermediate behaviors such as rolling
in a common direction with a time-periodic speed and
rolling with aperiodic reversals in direction (Supplemental
Material [11], Sec. 3. 3). Similar behaviors attributed to
inertial effects were reported for larger spheres
(a ¼ 50 μm) under stronger confinement (L=a ≈ 4) [17].
Here, we neglect this transition region and focus instead on
the previously undescribed phenomenon of back-and-forth
oscillations.
Oscillatory dynamics are reliably observed for strong

fields, Ee=Ec > 3, when the ratio between the particle
radius and the boundary layer thickness is of order
unity, a=l ∼ 1 (Fig. 2). In estimating this length scale,
l ¼ eμEe=krno, we approximate the mobility of AOT
micelles as μ ¼ ð6πηahÞ−1 where ah ¼ 1.7 nm is the
reported hydrodynamic radius [9]. We further assume that
the rate constant for neutralizing collisions among charged
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FIG. 1. (a) Schematic illustration of the experimental setup. The
inset shows the ionization of AOT micelles, which is balanced by
recombination in the bulk and by field-induced migration in
boundary regions of thickness l. (b) Time-lapse microscopy
images showing the three observed particle behaviors: stationary,
rolling, and oscillating. Here, the particle radius is a ¼ 5 μm, the
AOT concentration is ½AOT� ¼ 150 mM, and the electrode
separation is L ¼ 150 μm. Scale bars are 40 μm. See also
Supplementary Material [11], Video 1. (c) Time-averaged particle
speed vs external field strength Ee. For each 20-ms trajectory, we
compute the mean and standard deviation of the particle speed.
Markers denote the median of these mean speeds for ca. 1000
trajectories; error bars denote the median of the corresponding
standard deviations. The plotted data are colored based on
probability assignments of the Bayesian classifier. The solid
curve is a fit of the form U ¼ ðκa=τmwÞ½ðEe=EoÞ2 − 1�1=2 with
κ ¼ 0.40 and Eo ¼ 2.3 V=μm; the Maxwell-Wagner time is
τmw ¼ 0.70 ms from independent conductivity measurements
(Supplemental Material [11], Sec. 1). Note that the fitted value
of the field strength Eo differs from that predicted by Eq. (1) for
an unbounded sphere, Ec ¼ 0.91 V=μm.
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micelles is diffusion limited such that kr ¼ 2e2μ=εf [6,18].
Finally, we estimate the concentration of charged micelles
from the measured conductivity as no ¼ σf=2e2μ
(Supplemental Material [11], Sec. 1). The resulting boun-
dary layer thickness l varies from 1 to 20 μm depending on
the AOT concentration and the external field strength.
Notably, large particles (a=l ≫ 1) that extend beyond the
boundary region do not oscillate but rather roll at even the
highest fields investigated (Fig. 2). Small particles
(a=l ≪ 1) do not move at all; their otherwise Brownian
motion is arrested upon application of the field
(Supplemental Material [11], Sec. 3.4).
The frequency of particle oscillations ω is comparable to

the dipolar relaxation rate τ−1mw and increases with increas-
ing field strength [Figs. 3(a) and 3(b)]. Experiments at
different AOT concentrations suggest that the oscillation
frequency is well approximated as ω ≈ 0.09τ−1mwEe=Ec
(Supplemental Material [11], Sec. 3.5). This form is
identical to that of the rolling frequency predicted by the
leaky dielectric model, suggesting that the oscillation
frequency is set by a similar balance of particle rotation
and charge accumulation at the particle surface.
The peak-to-peak amplitude of the oscillating particle

position is approximately 2A ≈ πa [Fig. 3(c)]. This
observed quantity is linearly related to the angle 2A=κa
by which the particle rotates during each half of the
oscillation cycle. If one assumes frictional rolling with
κ ¼ 1, the observed amplitude would imply a rotation of ca.
180°. By contrast, the assumption of hydrodynamic rolling

with a thin lubricating film [19,20] requires that κ ≤ 1=4
and implies a rotation of at least two revolutions per half
cycle. Below, we present a model for particle oscillations
that favors the former interpretation based on frictional
rolling.
Owing to the small size of the particles, the observed

oscillations cannot be attributed to inertial effects. The
Reynolds number for particle oscillations is much less than
unity, Re ¼ ρωa2=η ∼ 10−3, where ρ is the fluid density.
The hydrodynamic resistance to motion is therefore propor-
tional to the particle velocity. Moreover, particle inertia is
also negligible as evidenced by the small Stokes number,
St ¼ ρpa2=15ητmw ∼ 10−4, where ρp is the density of the
particle. With finite particle inertia, Quincke dynamics of a
sphere in an unbounded fluid is mathematically identical to
the Lorenz system [21] and to the Malkus water wheel [22],
which are known to exhibit oscillatory and chaotic dynam-
ics [23]. In the absence of inertial effects, however, only the
stationary and rolling solutions are permitted by the leaky
dielectric model in an unbounded fluid.
Control experiments on particles within the bulk fluid

suggest that oscillatory dynamics occur only near the
electrode surface. We use a standing acoustic field to
levitate particles at the midplane between two planar
electrodes [24] and observe their motion upon application
of the electric field (Supplemental Material [11], Sec. 4 and

FIG. 2. Phase diagram showing the observed dynamics as a
function of two dimensionless parameters: a=l, the ratio of the
particle radius and the boundary layer thickness; Ee=Ec, the ratio
of the external field strength and the critical field of Eq. (1).
Plotted data correspond to experiments on five different particle
sizes a ¼ 0.5; 1.5; 2.5; 5; 25 μm (for ½AOT� ¼ 150 mM) and
three different AOT concentrations ½AOT� ¼ 50, 100, 150 mM
(for a ¼ 5 μm). Markers are colored based on probability assign-
ments of the Bayesian classifier (Supplemental Material [11],
Sec. 2).

(a)

(b) (c)

A

FIG. 3. (a) Particle position r vs time t for PS spheres (radius
a ¼ 5 μm) in different AOT-hexadecane solutions. The applied
field is Ee=Ec ¼ 5.4, which corresponds to Ee ¼ 2.2, 3.7, and
4.8 V=μm for ½AOT� ¼ 50, 100, and 150 mM, respectively.
(b) Oscillation frequency ω vs external field strength Ee for
different AOT concentrations. Markers denote the mean frequen-
cies within populations of particle trajectories of equal duration;
error bars denote standard deviations of these populations.
(c) Peak-to-peak oscillation amplitude 2A vs external field
strength Ee for the three AOT concentrations in (b). Markers
denote the mean frequencies; error bars denote standard devia-
tions.
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Video 2). In the absence of the acoustic field, the appli-
cation of a strong electric field drives the particles to
oscillate at the electrode surface. Such oscillations are not
observed when the same field is applied to particles
levitating at the midplane of the chamber. Instead, particles
in the bulk fluid exhibit steady rotation consistent with
predictions of the leaky dielectric model.
To understand why particles of intermediate size oscil-

late near the electrode (see Fig. 2), we first consider the
transport of charged AOT micelles around a stationary
sphere near a plane boundary [Figs. 4(a) and 4(b)]. The
electric field and the carrier densities are modeled using the
Poisson-Nernst-Planck (PNP) equations modified to
describe the generation and recombination of charged
micelles within the electrolyte [6,25] (Supplemental
Material [11], Sec. 5). At steady state, the solution is
characterized by three length scales: the particle radius a,
the Debye length λD ¼ ðεfkBT=2e2noÞ1=2, and the boun-
dary layer thickness l associated with carrier recombina-
tion. We focus our analysis on the limit of strong fields
relevant to our experiments, for which Ee ≫ kBT=el or,
equivalently, l ≫ λD. At the anode (cathode), we assume
that the injection of positive (negative) charge carriers is
negligible compared to their formation within the electric
boundary layer [26]. Under these conditions, the behavior
of large spheres (a ≫ l) is well described by the leaky
dielectric model. Charge accumulates at the particle surface
as to redirect the electric field and the associated electric
current around the particle [Fig. 4(a)]. The Quincke
instability is caused by the relaxation of this dipolar charge
distribution via particle rotation.
For small spheres (a ≪ l), however, the accumulation of

charge at the particle surface is mitigated by the diffusive
leaking of charge carriers around the sides [Fig. 4(b)]. The
comparatively little charge that accumulates does not
significantly alter the electric field. Without a sufficiently
large dipole moment directed antiparallel to the external
field, there can be no Quincke rotation for these small
particles (cf. Fig. 2). Moreover, such particles are charac-
terized by a net charge that contributes additional electro-
static forces directed to the nearby electrode. The attraction
of small particles to the electrode surface helps to explain
the field-induced arrest of their Brownian motion.
For particles of intermediate size (a ∼ l), the observed

oscillations are explained by asymmetries in the rates of
charging between the top and bottom of the particle. Within
the confined region separating the particle and the elec-
trode, ionic currents are limited by the finite rate of ion
formation in the fluid. Within such a region of thickness δ,
the ion current does not exceed krn2oδ, which is less than the
ion current in the bulk, eμnoEe, provided that δ < l
(Supplemental Material [11], Sec. 5). As a result, the
bottom half of the particle surface charges more slowly
than the top half. This asymmetric charging can be
incorporated qualitatively into the leaky dielectric model

by introducing a position-dependent fluid conductivity that
increases linearly with distance z from the electrode sur-
face. This approximate treatment avoids the computation-
ally challenging task of solving the time-dependent PNP
equations governing the formation, transport, and recom-
bination of charged micelles. With the addition of the
conductivity gradient, numerical simulations of the leaky

(a)

(c)

(d) (e)

(b)

FIG. 4. (a),(b) Simulated electric field around a stationary
sphere in a model electrolyte above a plane electrode; color
map shows the charge density [11]. The radii of the large (a) and
small (b) spheres are a=l ¼ 3.5 and a=l ¼ 0.14, respectively.
Other parameters include the Debye length λD=l ¼ 0.028,
the surface separation δ=a ¼ 0.1, the particle permittivity
εp=εf ¼ 1.2, and the recombination rate constant krεf=e2μ ¼ 2.
(c) Time-averaged angular speed Ω scaled by τ−1mw vs external
field strength Ee scaled by Ec for three variations of the leaky
dielectric model: an unbounded sphere, a sphere at a plane
electrode with constant fluid conductivity, and a sphere at an
electrode with a conductivity gradient. The particle permittivity
is εp=εf ¼ 1.5; the surface separation is δ=a ¼ 0.1; the conduc-
tivity gradient is σf=ð2aþ δÞ; the resistance coefficient is
R=8πηa3 ¼ 1.45. The shaded region denotes one standard
deviation about the average speed. (d) Angular position θ vs
oscillation phase ωt for Ee ¼ 5.3Ec. (e) Oscillation frequency ω
scaled by τ−1mw vs external field strength Ee scaled by Ec.
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dielectric model effectively reproduce the particle oscil-
lations observed in experiment [Fig. 4(c), pink diamonds
and blue circles].
In the model, we consider a dielectric sphere of radius a

immersed in a conductive fluid at a distance δ from a plane
electrode (Supplemental Material [11], Sec. 6). Application
of an external field Ee drives the accumulation of charge at
the particle-fluid interface; the effects of free charge within
the electrolyte are neglected. The fluid conductivity is
assumed to vary with distance z from the electrode as
σfz=ð2aþ δÞ, approaching the bulk value σf at the top of
the particle. The angular velocity of the particle (parallel to
the plane) is linearly related to the electric torque as
Ω ¼ T=R, where R ¼ 8πηa3fðδ=aÞ is the relevant resis-
tance coefficient. With these assumptions, the particle
dynamics agree qualitatively with the experimental obser-
vations [cf. Figs. 1(c) and 4(c)]. At sufficiently high field
strengths—here, greater than 3.7 times the critical field Ec
for an unbounded sphere—the particle oscillates back and
forth with a peak-to-peak amplitude of ca. 200° [Fig. 4(d)].
The oscillation frequency ω increases in proportion to the
external field strength Ee [Fig. 4(e)].
Physically, particle oscillations combine the basic ele-

ments of the traditional Quincke mechanism—namely,
charge accumulation and mechanical relaxation—with
new couplings among the charge moments introduced by
the conductivity gradient. For a sphere in an unbounded
fluid of constant conductivity, the dynamics of Quincke
rotation can be described in terms of the particle’s dipole
moment, which evolves independently from the other
moments [14,15]. Within a conductivity gradient, however,
the disturbance field produced by one moment leads to
currents that alter the others. Inspection of the transient
charge moments for an oscillating sphere reveal a quadru-
pole moment that is approximately constant in the particle
reference frame (see Supplementary Material [11], Sec. 6.3
and Fig. S15). The disturbance field produced by this
quadrupole contributes to the charging of the dipole
moment as to reverse the direction of rotation, thereby
enabling back-and-forth oscillations. Similar oscillatory
dynamics are observed in a closely related mechanical
model, a modified Malkus water wheel [22,23] with
overdamped dynamics and position-dependent leakage
(Supplemental Material [11], Sec. 7 and Video 3).
To conclude, asymmetric charging within electric boun-

dary layers results in Quincke oscillations of colloids in the
absence of inertial effects or electrohydrodynamic flows.
Additional experiments on particles of different shapes
suggest that these oscillations can be achieved for any
dielectric particle of suitable size (Supplemental Material
[11], Sec. 8 and Video 4). This mechanism may therefore
provide a useful experimental model for active matter [27]
comprised of many self-oscillating units, where particle
interactions—neglected herein—mediate their collective
dynamics. More generally, Quincke oscillations illustrate

the potential importance of field-induced boundary layers
within nonpolar fluids. Even away from electrode surfaces,
such boundary layers are expected to influence the dynam-
ics of micron-scale Quincke swimmers [28–30].
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