
 

Homotopic Action: A Pathway to Convergent Diagrammatic Theories

Aaram J. Kim ,1 Nikolay V. Prokof’ev,2 Boris V. Svistunov,2,3,4 and Evgeny Kozik1
1Department of Physics, Kings College London, Strand, London WC2R 2LS, United Kingdom
2Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA

3National Research Center Kurchatov Institute, 123182 Moscow, Russia
4Wilczek Quantum Center, School of Physics and Astronomy and T. D. Lee Institute, Shanghai Jiao Tong University,

Shanghai 200240, China

(Received 11 October 2020; revised 12 April 2021; accepted 20 May 2021; published 23 June 2021)

The major obstacle preventing Feynman diagrammatic expansions from accurately solving many-
fermion systems in strongly correlated regimes is the series slow convergence or divergence problem.
Several techniques have been proposed to address this issue: series resummation by conformal mapping,
changing the nature of the starting point of the expansion by shifted action tools, and applying the
homotopy analysis method to the Dyson-Schwinger equation. They emerge as dissimilar mathematical
procedures aimed at different aspects of the problem. The proposed homotopic action offers a universal and
systematic framework for unifying the existing—and generating new—methods and ideas to formulate a
physical system in terms of a convergent diagrammatic series. It eliminates the need for resummation,
allows one to introduce effective interactions, enables a controlled ultraviolet regularization of continuous-
space theories, and reduces the intrinsic polynomial complexity of the diagrammatic Monte Carlo method.
We illustrate this approach by an application to the Hubbard model.
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Methods of quantum field theory have underpinned
remarkable breakthroughs in condensed matter physics
for three quarters of a century [1]. They provide an arsenal
of tools, based on Feynman diagrams, for systematic
description of many-body correlations. Early on it was
recognized that series of Feynman diagrams are not always
meaningful if summed to high orders [2], but the versatility
of constructing expansions around different starting points
[3–9] and self-consistent renormalization of their building
blocks for incorporating correlation effects in low orders
[1,3,10] have rendered the diagrammatic technique a
widespread language of theoretical physics. Recent explo-
sive development of algorithms for numeric summation of
the series using stochastic sampling, the so-called
diagrammatic Monte Carlo (DiagMC) approach [5,7–9,
11–27], has opened a new pathway to solving strongly
correlated systems with high and a priori controlled
accuracy. The role of controlling and improving the series
properties has become key for reaching this goal.
It was found, in particular, that convergence of the self-

consistently renormalized (bold-line) technique [10] with
diagram order does not yet guarantee that the result is
correct [28]. On the other hand, a wide class of dressed
diagrammatic expansions can be formulated as a Taylor
series in the powers of a single parameter ξ, which has well-
defined analytic properties free from misleading conver-
gence [6]. In this formalism, where the expansion is based
on the so-called shifted action, the arbitrary choice of the
zeroth-order action was shown to improve convergence

[5,7–9]. Furthermore, when a subset of strongly correlated
degrees of freedom can be solved exactly, an expansion
around this solution, accomplished, e.g., by diagrammatic
extensions of the dynamical mean-field theory (DMFT)
[29–33], often has superior convergence properties [19,25].
Whenever transforming the action does not yet yield a
convergent series, a wealth of techniques, such as con-
formal mapping and numerous analytic continuation meth-
ods [5,16,22,23,34,35], allows us to reliably reconstruct the
result behind the series by an a posteriori protocol. Even
certain cases with zero convergence radius become
tractable [34,35].
Nonetheless, formulating a many-body problem in terms

of a convergent diagrammatic power series is important. It
was demonstrated [36] that, when the series converge, the
DiagMC approach circumvents the fundamental computa-
tional complexity of interacting fermions, known as the
negative sign problem [37,38]. Since Feynman diagrams
can be constructed directly in the thermodynamic limit, the
only systematic error in the final answer comes from the
truncation of the series at some large order n and the
truncation error drops exponentially with n for a convergent
series. Recent efficient algorithms based on summation of
connected diagrams in terms of determinants [9,20–24,27]
take exponential in n time to evaluate the order-n sum,
which implies only polynomial scaling of the calculation
time with the inverse of the desired error bound. Moreover,
fast convergence of the series is essential for novel DiagMC
methods that compute real-time dynamic properties using

PHYSICAL REVIEW LETTERS 126, 257001 (2021)

0031-9007=21=126(25)=257001(6) 257001-1 © 2021 American Physical Society

https://orcid.org/0000-0003-4166-5976
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.257001&domain=pdf&date_stamp=2021-06-23
https://doi.org/10.1103/PhysRevLett.126.257001
https://doi.org/10.1103/PhysRevLett.126.257001
https://doi.org/10.1103/PhysRevLett.126.257001
https://doi.org/10.1103/PhysRevLett.126.257001


symbolic integration [39–42], where fewer terms of the
series could be obtained in principle. More generally,
having to deal with the problem of reconstructing the
answer from divergent series has been a major drawback of
diagrammatic approaches, requiring additional expertise
and labor, and impeding proliferation of DiagMC methods
for nonexpert users.
In this Letter, we show that the shifted-action tools,

conformal mappings, and homotopy ideas can be used to
design what we propose to call a “homotopic action,” Sh.
The diagrammatic expansions based on this action produce
series that converge automatically in cases when conformal
mapping in combination with the shifted action solves the
problem, with guaranteed reduction of computational
complexity and additional possibilities for further iterative
refinements. We illustrate this idea by constructing a
homotopic action for a prototypical fermionic system,
the doped two-dimensional (2D) Hubbard model, in a
challenging correlated regime where the standard diagram-
matic expansion diverges. The guaranteed convergence of
expansions based on Sh allows direct evaluation of observ-
ables by the DiagMC technique with a single parameter n
controlling the accuracy. To this end, we implement a
DiagMC algorithm based on the connected determinant
Monte Carlo (CDet) [20] method, and demonstrate that it
substantially improves the accuracy of the result in com-
parison with that inferred from an analytic continuation of
the original divergent series obtained by the CDet method.
As an example of new capabilities naturally emerging in

the homotopic action framework—and distinctively differ-
ent from existing shifted-action and conformal-mapping
approaches—we propose a protocol for “anticollapse”
regularization of continuous-space theories. It solves, at
least conceptually, the notorious problem of the zero
convergence radius due to Dyson’s collapse [2] by gen-
erating a convergent expansion in terms of the bare
coupling, such as, e.g., the Coulomb potential.
Shifted action as the simplest case of homotopic

action.—A generic interacting fermionic system is
described by an action of the form

S½Ψ� ¼ S0½Ψ� þ gSint½Ψ�; ð1Þ

where S0 is a bilinear in the Grassmann fieldsΨ part, Sint½Ψ�
contains higher order in Ψ interaction terms, and g is the
coupling constant. In strongly correlated regimes, one often
finds that the most straightforward approach to constructing
Feynman diagrams—by expanding around S0 in the powers
of g—fails because the series diverge for the physical value
of interest g ¼ g�. The convergence radius in the complex
plane of g can even be zero for models formulated in
continuous space [2]. Unless the system undergoes a phase
transition when g is continuously increased from zero to g�,
this divergence stems from singularities in the complex
plane, as illustrated in Fig. 1, the closest one to the origin gs

defining the convergence radius jgsj. Our intuition about
such singularities is very limited because they are not
necessarily based on the ultraviolet physics or phase
transitions taking place when the sign of g is flipped, while
for complex g the Hamiltonian becomes non-Hermitian and
hence unphysical.
One way to get around the series divergence problem is

to “shift” the expansion point bringing the physics of
interest inside the convergence radius (right half of Fig. 1).
In its simplest form, the idea [3,5–7] is to replace the
original action (1) with one of the form

S̃½Ψ; ξ� ¼ S̃0½Ψ� þ Λ½Ψ; ξ� þ ξgSint½Ψ�: ð2Þ

Here Λ½Ψ; ξ� is bilinear in Ψ and it is assumed that its
dependence on ξ can be represented by a Taylor series

Λ ¼
X∞
j¼1

ξjΛj½Ψ�; ð3Þ

convergent for any ξ ≤ 1. The only restriction that an
arbitrary set of S̃0 and fΛjg functionals (the latter are called
counter-terms) has to satisfy is

S̃0½Ψ� þ Λ½Ψ; ξ ¼ 1� ¼ S0½Ψ�; ð4Þ

so that S̃ðξ ¼ 1Þ ¼ S. The diagrammatic expansion is now
performed in the powers of ξ and S̃0 serves as the new state
on top of which the expansion is done.
This tool can be used to expand around various mean-

field and self-consistent solutions based on a limited set of
skeleton diagrams, such as the Hartree-Fock or GW
approximations, states with explicitly broken symmetry,
or any other approximate solution that is considered to be
close to the final answer. The resulting series in ξ may
happen to be convergent even in the strongly correlated
regime [5,7–9].
Going one step further, the two-body interaction terms

between fermions can be decoupled using the Hubbard-
Stratonovich transformation involving complex-number
fields φ and the original action can be rewritten as (in

FIG. 1. Schematic of how a singularity gs in the complex plane
of the coupling g leads to a divergent series for the physical value
g�, and how the shifted action trick works: it amounts to changing
the “origin of expansion” and introducing a different expansion
parameter ξ; the physical model is reproduced for ξ ¼ 1, the
singularity ξs controlling the convergence. Illustratory poles and
branch cuts are depicted by dots and solid lines, respectively.
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some cases this action is considered as the original one in
the first place)

S½Ψ;φ� ¼ S0½Ψ� þD0½φ� þ
ffiffiffi
g

p
V int½Ψ;φ�: ð5Þ

At this point, the shifted action trick can be applied in both
fermionic and bosonic channels

S̃ðξÞ¼ S̃0½Ψ�þ D̃0½φ�þΛ½Ψ;ξ�þΩ½φ;ξ�þ
ffiffiffiffiffi
ξg

p
V int½Ψ;φ�;

ð6Þ

and used to effectively change the nature of the interaction
terms, order by order. The Taylor series in ξ for Λ andΩ are
chosen to be convergent in the unit circle of ξ [by
construction, Λðξ ¼ 0Þ ¼ 0 and Ωðξ ¼ 0Þ ¼ 0] with only
one condition to satisfy for an otherwise infinite set of
arbitrary functions: S̃ðξ ¼ 1Þ ¼ S.
Flexibility in designing shifted actions with a large

number of nonlinear in ξ counterterms is almost never used
and most often only the simplest, linear in ξ, shifts Λ of the
Green’s function are implemented, with notable exception
of Coulomb systems where screening is required for having
a meaningful expansion [6,8]. With the help of suitable
Hubbard-Stratonovich transformations one can introduce
new and manipulate arbitrary many-body interactions [6],
but the formalism is becoming progressively more complex.
Beyond shifting, integrating out the original variables

with the local action allows one to incorporate arbitrarily
strong local correlations at the starting point of the
expansion, as demonstrated by the dual fermion and boson
theories [31–33]. The dual diagrammatic series describing
only nonlocal correlations are expected to be better behaved.
Regardless of how the effective action is transformed, the

resulting series may still diverge. So far, the standard
protocol for dealing with this problem has been to apply
series resummation techniques. The most versatile and
widely used one is based on conformal mapping, illustrated
in Fig. 2. First, one identifies singularities in the complex
plane of the expansion parameter, either analytically, using
additional knowledge about system properties [23,35,43],
or numerically, by matching the computed power seriesP

k akξ
k by some analytic expression AðξÞ [22,44–48]:

pole singularities are captured precisely by AðξÞ that is a
ratio of two polynomials, known as the Padé approximant

[44]; brunch cuts are described by AðξÞ of a more general
form, e.g., the Dlog-Padé [45], integral [46], or hyper-
geometric and Meijer-G [47,48] functions. Knowing the
location of the singularity ξs closest to the origin, one can
transform the complex plane of ξ by an analytic function
w ¼ wðξÞ, wð0Þ ¼ 0, to a domain of the complex variable
w where the singularity is farther away from the origin than
the image of ξ ¼ 1, jwðξsÞj > jwð1Þj. Then, upon express-
ing the inverse map ξðwÞ as

ξ ¼
X
k¼1

fkwk; ð7Þ

the reexpansion of the original series,
X
j

ajξjðwÞ →
X
k

bkwkðξÞ; ð8Þ

is convergent at wðξ ¼ 1Þ. More generally, the mathemati-
cal literature on the topic of series resummation is vast,
making divergent series practically useful, provided a
sufficient number of terms are known and singularities
are reasonably well understood. The homotopic action
allows us to incorporate the principles of resummation
in the formulation of the physical problem itself.
General homotopic action.—The standard definition of

homotopy is a continuous transformation of one function
into another. In the shifted action formalism described
above, we aim at optimizing the diagrammatic expansion
by selecting an appropriate starting action S̃ðξ ¼ 0Þ and its
continuous transformation into the physical action
S ¼ S̃ðξ ¼ 1Þ, similarly to the homotopy at the heart of
the functional renormalization group (FRG) [49–51],
DMF2RG [52], and homotopy analysis [53,54] methods.
If we distance ourselves from the specifics of how various
shifts are implemented, we recognize that a far more
intuitive and transparent way to cast the attempted trans-
formation of the action would be to write

ShðwÞ ¼ S̃0 þ ΛhðwÞ þ S̄intðwÞ; ð9Þ
where S̃0 and Λh are bilinear in all fields, the dependence of
ΛhðwÞ and S̄intðwÞ on w can be represented by the
convergent Taylor series for jwj ≤ jw�j, cf. Eq. (3), and
Shðw�Þ≡ S for some w�. There are no restrictions other-
wise on the nature and number of terms contributing to
ΛhðwÞ, and S̄intðwÞ. They may be “standard” counterterms
based on bare or skeleton diagrams, symmetry breaking
and restoring fields, as well as arbitrary new interaction
terms introduced by the homotopic transformation of the
following (or similar) form:

ShðwÞ → ShðwÞ þ wðw − w�ÞSeff : ð10Þ
Here Seff is chosen to capture the emerging physics of
strong correlations already at the lowest orders of the
expansion in w. Its form can be based on phenomenological

FIG. 2. Under conformal mapping, singularities defining the
convergence radius (dot) are moved farther away from the origin
and the series for the point of interest (star) converge.
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considerations or explicit calculations in the framework of
the FRG [49–51] or DMF2RG [52].
While it is hard to comprehend the ultimate potential of

the homotopic action approach, it is easy to see that it will
automatically reproduce the result of conformal mapping,
i.e., the diagrammatic series based on Sh will converge.
Indeed, if the series based on the action S̃ðξÞ diverge, then
Eq. (7) can be used to construct the homotopic action
ShðwÞ≡ S̃(ξðwÞ), with w� ¼ wðξ ¼ 1Þ. This procedure
results in complete reshuffling of counterterms and inter-
action terms between the orders in such a way that the
expansion in the powers of w is now convergent because it
is precisely the series on the rhs of (8), as follows from
trivial power counting. When this series is summed by
DiagMC, the error bars on the final answer improve. The
exploding in the limit of large n original coefficients an are
combined into sign-cancelling and/or suppressed contribu-
tions to bn. This leads to a reduction of the Monte Carlo
variance, which is missing when the resummation (8) is
applied after computing the coefficients an. This accuracy
gain enables iterative improvement of the homotopic action
ShðwÞ itself, aimed at further increasing the precision of the
solution: Having analyzed the singularity structure in the w
plane, one could construct a subsequent conformal map
w0 ¼ w0ðwÞ to obtain the action Shðw0Þ ¼ Sh(wðw0Þ) with a
faster-converging expansion, and so on.
On the practical side, there is no computational overhead

in using Sh instead of S̃ in DiagMC algorithms where the
sum of all connected diagram topologies of a given order is
performed deterministically using determinants and only
the integration over the internal variables is done by
Monte Carlo sampling [9,20–22,24,27] (the CDet algo-
rithm and its derivatives). When computing the integrand of
order n, these algorithms intrinsically evaluate contribu-
tions from all expansion orders up to n.
Figure 3 illustrates the efficiency of the homotopic action

approach within the CDet framework by its application to
the 2D Hubbard model on the square lattice. The standard
shifted action for the model [4,5,7] reads

S̃½Ψ; ξ� ¼ S̃0½Ψ� þ Λ½Ψ; ξ� þ ξUSint½Ψ�;

S̃0½Ψ� ¼
X
iσ

Z
1=T

0

dτΨ̄iσðτÞð∂τ − μþ αÞΨiσðτÞ

− t
X
hijiσ

Z
1=T

0

dτðΨ̄iσðτÞΨjσðτÞ þ c:c:Þ;

Λ½Ψ; ξ� ¼ −ξα
X
iσ

Z
1=T

0

dτΨ̄iσðτÞΨiσðτÞ;

Sint½Ψ� ¼
X
i

Z
1=T

0

dτΨ̄i↑ðτÞΨi↑ðτÞΨ̄i↓ðτÞΨi↓ðτÞ: ð11Þ

Here, ΨiσðτÞ represents the spin-σ Grassmann field at the
imaginary-time τ on the site i; T is the temperature, μ

chemical potential, t nearest-neighbor hopping amplitude,
U on-site repulsion, and α is the arbitrary shift parameter.
Despite the shift, diagrammatic expansions with this action
are divergent, e.g., for T ¼ 0.2t, U ¼ 7t, μ ¼ 1.8959t, α ¼
2.5568 due to a singularity at ξs ∼ −0.65. We construct the
homotopic action by ShðwÞ≡ S̃½ξðwÞ�, which generates a
convergent expansion with ξðwÞ ¼ 12w=7ð1 − wÞ2 map-
ping the branch cut along the real axis from ξ ¼ −3=7 to
−∞ onto the unit circle jwj ¼ 1.
Figure 3(a) presents the partial sum of the convergent

series
P

n bnw
n� for the total density with bn generated by

the homotopic action Sh contrasted to that of the divergent
series

P
n an produced by the original action S̃. The solid

circle is the result of extrapolation of the convergent
series to infinite order using the Dlog-Padé method [45].
Note that, within the homotopic action framework, the
Monte Carlo algorithm can directly sample the partial sumP

n bnw
n instead of the coefficient bn (see Supplemental

Material [55] for technical details).
When it comes to high-precision calculations, the homo-

topic action approach yields a significant efficiency gain as
compared to the conventional conformal mapping method
based on postprocessing of the original series [Fig. 3(b)].
The origin of this gain, as well as its sharp growth as a
function of the inverse relative error, 1=ε, within which the
final result is obtained, is easy to understand. The gain is all
about the way the high-order diagrams—important for
achieving small ε—are sampled. Instead of sampling
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FIG. 3. Results for the total fermion density of the 2D Hubbard
model at T ¼ 0.2t, U ¼ 7t, μ ¼ 1.8959t. (a) Partial sum of the
divergent series for the original action S̃ðξ ¼ 1Þ (11) and the
convergent series for the homotopic action Shðw�Þ. (b) Efficiency
gain of ShðwÞ over S̃ðξÞwith its series resummed by wðξÞ, defined
as the ratio of the respective computational times needed to obtain
density within the error ε. Inset: the corresponding computational
times and the reduction of the asymptotic polynomial scaling
(dotted line).
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diagrammatic contributions with large weights that nearly
compensate in the final answer and leave one with large
relative error bars, the cancellation of the sign-alternating
terms from different orders is now enforced before sam-
pling; see [55] for more details.
Anticollapse regularization.—Dyson’s reasoning [2] for

the zero convergence radius of perturbative expansions in
continuous-space systems is directly linked to the ultra-
violet (UV) behavior of attractive fermionic fields: For an
action (1), an observable cannot be analytic at g ¼ 0 if
changing the sign of g for jgj → 0 leads to a collapse—an
instability towards unlimited increase of particle density. In
systems with hard momentum cutoff, e.g., lattice models,
the expansion in the powers of coupling is expected (as
supported by strong evidence) to have a finite convergence
radius at T > 0. This observation leads to a natural
homotopic procedure for constructing a theory with a
controlled anticollapse UV regularization. The simplest
trick (cf. infrared regularization in the FRG [49–52]) is to
modify the free-particle dispersion,

εðkÞ → εðkÞ þ αðw� − wÞk4ðα > 0Þ: ð12Þ

At small jwj, the quartic term (12) prevents Dyson’s
collapse, allowing one to explore analyticity in w and
extrapolation to the w ¼ w� limit. A more advanced and
general tool—a regularization of the interaction—is dis-
cussed in the Supplemental Material.
In conclusion, the paradigm of homotopic action ShðwÞ,

such that Shðw ¼ 0Þ is harmonic and Shðw ¼ w�Þ is
identical to the physical action, reveals a broad family of
convergent quantum-field-theoretical expansions in the
powers of a single (homotopy) parameter w. With an
appropriately designed ShðwÞ, one can naturally unify
the shifted-action and resummation techniques, as was
illustrated by a simple and yet nontrivial example. Further
intriguing possibilities to explore in the future include,
e.g., (i) ultraviolet (anticollapse) regularization of conti-
nuous-space theories, and (ii) the introduction in ShðwÞ
of effective interactions that vanish both at w ¼ 0 and w ¼
w� but are otherwise arbitrary and chosen to capture the
physics of the model already at the lowest orders of
expansion, as, e.g., in approximate analytic theories. As
the expansion progresses, the homotopic action accom-
plishes a seamless replacement of the effective-interaction
contributions by those from the original bare interaction,
thereby establishing control of accuracy in effective
theories.
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