
 

Synchronizing Bloch-Oscillating Free Carriers in Moiré Flat Bands
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Achieving Bloch oscillations of free carriers under a direct current, a long-sought-after collective many-
body behavior, has been challenging due to stringent constraints on the band properties. We argue that the
flat bands in moiré graphene fulfill the basic requirements for observing Bloch oscillations, offering an
appealing alternative to the stacked quantum wells used in previous work aiming to access this regime.
Bloch-oscillating moiré superlattices emit a comblike spectrum of incommensurate frequencies, a property
of interest for converting direct currents into high-frequency currents and developing broadband amplifiers
in terahertz domain. The oscillations can be synchronized through coupling to an oscillator mode in a
photonic or plasmonic resonator. Phase-coherent collective oscillations in the resonant regime provide a
realization of current-pumped terahertz lasing.
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Bloch oscillations, arising when electrons are driven
through a perfect crystal lattice by an electric field, are an
iconic example of a coherent dynamics in quantum many-
body systems [1,2]. The oscillations are at the same
frequency for all carriers, for a one-dimensional lattice
given by ω ¼ eEa=ℏ with E the field strength and a the
lattice period. Besides the obvious fundamental appeal, this
behavior has long been eyed as a promising way to convert
direct currents into high-frequency currents [3]. Wide
interest in this phenomenon stems from the expectation
that it may help fill the infamous “terahertz gap,” leading to
radiation emitters and detectors operating in this frequency
range [4–6].
While Bloch oscillations have long been immortalized in

textbooks, realizing them in solids has proven to be a
challenging task. Achieving this regime requires over-
coming several obstacles. One is the dephasing due to
electron energy loss to phonons. To suppress phonon
emission exceptionally narrow electronic bands of width
smaller than the optical phonon energy must be used.
Another is the dephasing due to disorder scattering.
Experimental efforts so far mainly focused on narrow
minibands in synthetic MBE-grown semiconductor super-
lattices [6–9]. These systems cleared a number of key
milestones on the road toward achieving Bloch oscillations.
They display the signatures indicative of Bloch oscillations
such as negative differential conductivity dI=dV < 0,
recurrence and ringing in the optical pump-probe mea-
surements, Wannier-Stark (WS) ladders and, last but not
least, optical gain [6–9]. However, upon the injection
current approaching the relevant parameter range the
superlattice systems develop instabilities and show a
complex noisy behavior due to the onset of switching
and formation of electric domains. This behavior presents

the main obstacle to achieving the collective globally
synchronized Bloch oscillations [10–12].
Meanwhile, recently Bloch oscillations were achieved in

cold atom systems, using Bloch minibands in optical
lattices [13–17]. This proof-of-principle demonstration
has greatly improved our understanding of the underlying
physics [18,19] and strengthened interest in demonstrating
electronic Bloch oscillations.
Given the difficulties encountered in semiconducting

superlattices it is natural to seek other systems that meet the
requirements for achieving Bloch oscillations. One enticing
opportunity is offered by the recently introduced moiré
superlattices in twisted bilayer graphene, a material that
hosts electron bands that are tunable by the twist angle
[20–25]. For twist angles θ ≲ 2° the moire electron bands
are considerably narrower than the optical phonon energy
(∼200 meV), becoming as narrow as J ≲ 10–20 meV near
“magic” values of the twist angle θ ∼ 1°. Such bandwidths
are sufficient to eliminate the optical phonon emission, the
main obstacle to observing coherent Bloch oscillations in
widebands.
The moiré graphene also clears other key requirements

for observing Bloch oscillations. One is weak disorder
scattering. Since the narrow bands are formed in a solid
with a pristine near-perfect atomic order, they are less
susceptible to disorder than the bands in synthetic MBE-
grown semiconductor superlattices. This is manifested in a
high carrier mobility and ballistic carrier transport observed
over micron length scales at T ¼ 0 [24,25]. Estimating
the scattering time as τ ¼ l=vF with the mean free path
l ∼ 1 μm and velocity vF of about 1=30 of the graphene
monolayer value 106 m=s gives τ ∼ 3 × 10−11 s, a value
comparable to that of graphene monolayer. The scattering
rate can therefore be as low as γdis ∼ 10−2J. The two-
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dimensional character of moiré graphene will also help to
suppress the instability toward the formation of electric
field domains that hindered experiments in the stacks of
quantum wells [6]. In the moiré setup the electric current
can be driven in the graphene plane in a manner that
maintains the translation invariance of the system and does
not cause local charging. Indeed, gating is known to
maintain a spatially uniform carrier density even under
moderate to high currents.
Other appealing properties of moiré graphene are the

lack of Zener transitions, suppressed by sizable minigaps,
and the weakness of the coupling between electrons and
long-wavelength acoustic phonons [26–28]. Further, the
relatively large periodicity of moiré superlattices
(a ∼ 10 nm) reduces the required E field values:

γ ¼ max½γph; γdis� < ωB < J=ℏ; ωB ¼ eEa=ℏ: ð1Þ

Using moderate E fields will help to avoid the WS
localization effects and charge instabilities.
A key assumption is that phonon emission can remain

relatively weak despite rate enhancement due to the high
density of states in moiré bands and an out-of-equilibrium
carrier state created under an applied current. These
expectations are supported by a detailed analysis of phonon
emission [29], predicting emission rates which drop upon
an increase in the flat-band width and a growing E field.
Detuning away from the magic twist angle reduces the
density of states that governs phonon emission. Likewise,
an E field tunes the WS states out of resonance, abruptly
quenching phonon emission.
Importantly, although all free carriers Bloch oscillate

with identical frequencies, these oscillations are asynchro-
nous, as the oscillation phases are totally random and
uncorrelated for different carriers. Therefore, in order to
achieve collective continuous-wave Bloch oscillations
driven by a direct current, movements of different carriers
must be synchronized. We outline a way to achieve this
through coupling of the current-carrying channel to an
oscillator mode in a terahertz resonator. The resonator
frequency depends on system parameters, whereas the
Bloch frequency is tunable by varying the applied electric
field. As illustrated in Fig. 1, this system develops an
instability toward collective oscillations at a Bloch fre-
quency when the latter is close to the oscillator frequency.
In practice, the oscillator can be realized as a terahertz
photonic or plasmonic resonator in a 2D or a 3D archi-
tecture [6,30–34]. An alternative route to achieve synchro-
nization is through coupling to an intrinsic collective mode,
excitonic or plasmonic. Phase-coherent oscillations
achieved in this regime represent a realization of electri-
cally pumped terahertz lasing.
Before considering the synchronization problem we

summarize the basic picture of the free-carrier Bloch
oscillations in superlattices. In superlattices of dimension

D ≥ 2 different carriers can move at different angles
relative to the applied field [18,19,35–37]. Nevertheless,
the main properties of the one-dimensional Bloch oscil-
lations persist. The Bloch frequencies remain discrete,
taking values identical for all carriers in the system. A
new aspect is that different harmonics of the band
dispersion produce oscillations with several different dis-
crete frequencies. These frequencies are in general incom-
mensurate with one another, forming a comblike spectrum
pictured in Figs. 2 and 3.
The frequency comb dependence on the electric field

orientation is described by the geometric construction
illustrated in Fig. 2. Namely, possible frequencies are
given by the projections of different Bravais lattice vectors

al ¼ n1a
ð0Þ
1 þ n2a

ð0Þ
2 on the applied field E:

ωl ¼
e
ℏ
E · al ¼

e
ℏ
Eal cosðθ − θlÞ: ð2Þ

The dependence of the frequencies ωl on the orientation
and strength of the field E, as well as the tunability of moiré
superlattices by the twist angle, provide knobs that will
facilitate achieving Bloch oscillations in moiré graphene.
This result can be illustrated by considering a general

tight binding band on a monoatomic lattice,

FIG. 1. (a) Bloch-oscillating electrons synchronized by cou-
pling to an oscillator mode. A dc electric field E drives free-
carrier oscillations with frequency ωB (wavy lines). The oscil-
lations are at the same frequency for all carriers but are
asynchronous (not in phase). Synchronized oscillations are
achieved through coupling to an oscillator mode, depicted by
the thin lines. (b) A phase diagram showing the stable and
unstable regimes in which Bloch oscillations are asynchronous
and synchronized, respectively. The carrier scattering rate γ is
taken to be equal to the oscillator damping γ0 [see Eq. (11)];
phase diagrams for unequal γ and γ0 are discussed in [29]. The
Bloch frequency ωB on the x axis is proportional to the electric
field; ω0 is the oscillator frequency, the coupling strength α
between electrons and the oscillator is defined in Eq. (9).
Instability is easiest to achieve when ωB is tuned close to ω0.
The flowchart on the top shows the relationship between different
degrees of freedom: the dc current drives free-carrier oscillations;
these, synchronized by the oscillator, pump energy into the it (the
lasing effect).
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ϵðkÞ ¼
X

l¼1;2.::

− 2Jl cosðk · alÞ: ð3Þ

The Bravais lattice vectors al describe hopping between
different pairs of lattice sites, either nearest-neighbor or
non-nearest-neighbor. Bloch-oscillating free carriers obey
quasiclassical equations of motion

ℏ
dk
dt

¼ eE; ð4Þ

generating a linear time dependence kðtÞ ¼ ðe=ℏÞEtþ k0
with the linear part identical for all carriers and a carrier-
specific initial value k0. With this band structure and an
electric field of a generic orientation, E ¼ Eðcos θ; sin θÞ,

the frequencies at which the time-dependent velocity of the
electrons vðtÞ ¼ ð1=ℏÞ∇kϵðkÞjk¼ðe=ℏÞEtþk0 will oscillate are
given by al projected on E, Eq. (2). The resulting
dependence of the frequencies ωl on the orientation of E
is described by families of circles pictured in Fig. 2.
Physically, discrete frequency values arise because

electron trajectories sweep the (reduced) Brillouin zone
(BZ) of a two-dimensional crystal in the direction set by the
E vector. Every time an electron reaches a zone boundary it
umklapps to the opposite side and continues forward,
winding around the BZ at different frequencies in different
crystal axes directions. In that, the time-averaged rate of
winding around BZ along the direction of E is the same for
all carriers. This leads, for a general field orientation, to a
quasiperiodic dynamics characterized by two fundamental
frequencies which depend only on the field E and lattice
periodicity as described in Eq. (2), wherein ωl ¼ n1ω1 þ
n2ω2 in agreement with the geometric construction
in Fig. 2.
In the presence of momentum-relaxing scattering the

frequency spectrum broadens into a sum of finite-width
resonances centered at ω ¼ ωl. The quantity of interest is
the autocorrelation function of current fluctuations PðωÞ ¼
1
2

R
∞
−∞hδjðtÞ · δjðtþ τÞie−iωτdτ which describes the spec-

trum of electric noise emitted by the system. Simple
analysis predicts a comblike emitted power spectrum

PðωÞ ¼
X
l

Pl

ðω − ωlÞ2 þ γ2
ð5Þ

(see [29]). The Bloch oscillation regime corresponds to
nonoverlapping resonances. Since the frequencies ωl are
proportional to the applied field E the oscillations appear
when the field strength exceeds a threshold set by momen-
tum-relaxing scattering, Eγ ¼ γℏ=ea. At lower fields the
resonances merge into a broadband noise spectrum, indi-
cating a suppression of the oscillations.
In the Bloch oscillation regime the dc drift velocity

exhibits negative differential conductivity dI=dV < 0, a
characteristic behavior that provides a clear signature of
this regime. A direct calculation [29] predicts

vdc ¼
X
l

al
2Jlfl
ℏ

γωl

γ2 þ ω2
l

; fl ¼
X
k

f0ðkÞeialk; ð6Þ

with f0ðkÞ the steady-state momentum distribution. The
dependence on the field E is linear at small E < Eγ and
falls off as 1=E at large E > Eγ . Interestingly, current
depends on the dimensionless quantity E=Eγ in a way that
is independent of the specific value of γ. This behavior is
illustrated in Fig. 3(b). The drift velocity for electric fields
in different directions is shown in the inset.
Next, we turn to the discussion of Bloch oscillations

synchronized by coupling to an external oscillator mode:

FIG. 2. (a) Geometric construction of the frequency comb for
Bloch oscillations, Eq. (2), at a generic electric field orientation.
Frequencies ωl are found by projecting the real-space Bravais
lattice points (solid circles) onto the 1D line parallel to E (black
arrow) as indicated by dashed green lines. The shortest and next-
shortest vectors are shown as red and blue dots. Hollow circles,
found by projection, give the frequencies in Eq. (2), where the
emitted noise power PðωÞ peaks. (b) Visualization of the comb ωl
angle dependence vs E orientation relative to the superlattice.

FIG. 3. (a) The comblike frequency spectrum of current
fluctuations, Eq. (5), consisting of finite-width resonances at
the discrete frequency values ωl, Eq. (2). Frequency units are
ωB ¼ ðe=ℏÞEa, the power spectrum PðωÞ is in arbitrary units.
The field orientation and labeling of different peaks match those
in Fig. 2. (b) The direct-current drift velocity, Eq. (6). Shown is
the full dependence (inset) and traces for several different field
orientations. Bloch oscillations occur for field strength
E > Eγ ¼ ℏγ=ea; negative differential conductivity dI=dV < 0

is a hallmark of this regime.
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H ¼
X
i

½ϵðpiÞ − eExi − αQxi� þ
1

2m
P2 þ ω2

0m
2

Q2: ð7Þ

Here, ϵðpÞ is the band dispersion, pi and xi are the momenta
and coordinates of the electrons; P and Q are the momen-
tum and amplitude of the oscillator. The Bloch electron
coupling to the oscillator and the external field is through
potentials UðxiÞ ¼ −eExi − αQxi seen by each of the
electrons. In this approach we ignore the direct carrier-
carrier interactions, treating electron dynamics in a free-
particle approximation. Bloch oscillations are driven by the
electric field E, the term −αQxi describes coupling of the
electrons to the oscillator mode. In practice the oscillator
can be realized as, e.g., a terahertz photonic or plasmonic
resonator [6,30–34].
Starting from the equations of motion originating from

the Hamiltonian above, we wish to integrate out the carrier
degrees of freedom and derive a closed-form dynamics for
the oscillator. For that purpose we solve the equations of
motion for the ith electron beginning from the time t0i < t
when its state was last reset by scattering and the
Hamiltonian dynamics described by Eq. (7) had started.
The full set of equations of motion for the electrons and

the oscillator is

_pi ¼ −
∂H
∂xi ¼ eEþ αQðtÞ; _xi ¼

∂H
∂pi ¼

∂ϵðpiÞ
∂pi ;

_P ¼ −mω2
0Qþ

X
i

αxi; _Q ¼ P=m: ð8Þ

Eliminating PðtÞ yields a second-order equation of motion
for the oscillator mode QðtÞ, driven by an external force
given by a sum of contributions due to the electrons

Q̈ðtÞ þ ω2
0QðtÞ ¼ fðtÞ; fðtÞ ¼ α

m

X
i

xiðtÞ: ð9Þ

Importantly, the cumulative effect due to the electrons,
given by the quantity fðtÞ, gives rise to a “memory effect”
in the oscillator dynamics. Each term in the sum

P
i xiðtÞ is

given by a solution of the equations of motion for xiðtÞ and
piðtÞ, Eq. (8), initialized at an earlier random time t0i < t.
The oscillator dynamics QðtÞ, PðtÞ during the time inter-
vals t0i < τ < t affects the electron states xiðtÞ, piðtÞ, giving
rise to a backaction fðtÞ ¼ ðα=mÞPi xiðtÞ with the
dynamical memory originating from the dependence on
QðτÞ and PðτÞ at the earlier times τ < t.
The feedback due to this memory effect enables syn-

chronization of Bloch dynamics, resulting in a macroscopic
oscillating current generated by Bloch-oscillating electrons.
To describe the instability we compute the backaction term
linearized in Qðt0Þ (the analysis is lengthy but straightfor-
ward, see [29]). Substituting the result in Eq. (9) gives a
characteristic equation for ω of the form

ω2
0 − ω2 ¼ iλ

ω

�
γ2

ðγ2 þ ω2
BÞðγ − iωÞ þ

γ

ðωþ iγÞ2 − ω2
B

�
;

ð10Þ

where we defined λ ¼ Nðα2av0=mℏÞ with N the total
number of Bloch-oscillating electrons.
The system becomes unstable when Eq. (10) admits

solutions in the upper half-plane of complex ω. Before
exploring this instability we inspect, as a sanity check, the
regime of highly damped Bloch oscillations γ ≫ ωB, ω0. In
this case, Eq. (10) reads ω2

0 − ω2 ¼ ðiλ=ωγÞ. At large γ, the
roots of this equation are close to �ω0. Writing
ω ¼ �ω0 þ Δω, at leading order in 1=γ we find
Δω ¼ −ðiλ=2ω2

0γÞ. The negative imaginary part indicates
that no instability arises in this regime, i.e., the driven
system is stabilized by high damping.
A very different situation occurs at weak damping

γ ≪ ωB;ω0. The new behavior is simplest to understand
close to the resonance between the oscillator and Bloch
frequencies, ω0 ≈ ωB. For ω values near the resonance,
where the last term in Eq. (10) dominates, we can ignore the
first nonresonant term. This gives

½ω2
0 − ðωþ iγ0Þ2�½ðωþ iγÞ2 − ω2

B� ¼
iλγ
ω

: ð11Þ

Here, we added the oscillator damping rate γ0. Working
near the resonance and expanding in a small δω ¼ ω −
ω0 ≪ ω0 ≈ ωB to obtain the complex frequency roots
positioned near ω0, the characteristic equation becomes

ðω − ω0 þ iγ0Þðωþ iγ − ωBÞ ¼ −iη=4; η ¼ λγ

ω3
0

:

ð12Þ

The properties of Eq. (12) are particularly straightforward
when γ0 ¼ γ. In this case, the roots are

ω1;2 ¼ −iγ þ ωB þ ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωB − ω0Þ2 − iη

p
2

: ð13Þ

The system is stable if Imω1;2 < 0 and unstable otherwise.
Using the identity

Imð
ffiffiffiffiffiffiffiffiffiffiffiffi
x − iη

p
Þ ¼ −sgnη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ η2

p
− x

2

s
ð14Þ

with x ¼ ðωB − ω0Þ2, the condition for the instability
becomes

η2 > ½ðωB − ω0Þ2 þ 4γ2�16γ2: ð15Þ

This criterion predicts the Bloch frequency ωB and the
coupling strength λ values for which an instability toward a
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synchronized dynamics may occur, giving the phase dia-
gram shown in Fig. 1. As expected on general grounds, the
instability is easiest to achieve when Bloch oscillations are
in resonance with the oscillator, ωB ¼ ω0. Tuning away
from the resonance suppresses the instability. The insta-
bility signals the onset of a collective regime in which
Bloch-oscillating electrons become synchronized through
coupling to the oscillator mode.
Awider variety of collective regimes can be achieved by

varying the oscillator damping γ0. High and low damping
values, γ0 ≫ γ and γ0 ≪ γ, favor synchronization and
lasing, respectively. In both cases the instability toward
collective dynamics can occur not only on the resonance
ωB ≈ ω0 but also away from it in a relatively wide range of
E fields, ωB < ω0 for synchronization and ωB > ω0 for
lasing (see [29]). We note that the lasing regime can also be
understood in terms of a negative ac conductivity that
enables gain of terahertz radiation [5,10–12].
An intriguing question for future work is the role of

electron interactions. Several interesting regimes can be
envisioned depending on the relation between carrier
concentration and the localization radius of WS states
r0 ∼ J=eE. At high carrier concentration, nr20 ≫ 1, the
interactions will act to dephase the oscillations, producing
an asynchronous Bloch-oscillating electron gas. To the
contrary, at low carrier concentration nr20 ≪ 1, the inter-
actions will tend to create a spatially ordered Wigner solid
of localized Bloch-oscillating carriers. Ordering will sta-
bilize oscillations and facilitate synchronization.
Another question of interest is the effect of thermal

fluctuations and noise. While the electron temperature
under a strong direct current is expected to be high, in
the architecture considered above the temperature of an
external oscillator is naturally decoupled from that of
electrons. The oscillator will remain cold and provide a
synchronizing feedback on the electron subsystem.
In summary, the unique electronic properties of the flat

bands in moiré graphene, such as the bandwidth consid-
erably narrower than the optical phonon energy, the
∼10 nm-large superlattice periodicity and relatively high
mobility, will facilitate observing the Bloch oscillations.
The two-dimensional nature of the system offers addi-
tional benefits: the carriers, which are fully exposed, can
be coupled to a nearby oscillator mode that will syn-
chronize their movements to enable phase-coherent col-
lective oscillations, a regime in which current-pumped
synchronization and terahertz lasing can be realized and
explored.
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