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We construct multimode viscous hydrodynamics for one-dimensional spinless electrons. Depending on
the scale, the fluid has six (shortest lengths), four (intermediate, exponentially broad regime), or three
(asymptotically long scales) hydrodynamic modes. Interaction between hydrodynamic modes leads to
anomalous scaling of physical observables and waves propagating in the fluid. In the four-mode regime, all
modes are ballistic and acquire Kardar-Parisi-Zhang (KPZ)-like broadening with asymmetric power-law
tails. “Heads” and “tails” of the waves contribute equally to thermal conductivity, leading to ω−1=3 scaling
of its real part. In the three-mode regime, the system is in the universality class of a classical viscous fluid
[O. Narayan and S. Ramaswamy, Anomalous Heat Conduction in One-Dimensional Momentum-
Conserving Systems, Phys. Rev. Lett. 89, 200601 (2002)., H. Spohn, Nonlinear fluctuating hydrodynamics
for anharmonic chains, J. Stat. Phys. 154, 1191 (2014).]. Self-interaction of the sound modes results in a
KPZ-like shape, while the interaction with the heat mode results in asymmetric tails. The heat mode is
governed by Levy flight distribution, whose power-law tails give rise to ω−1=3 scaling of heat conductivity.
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Understanding properties of interacting electronic sys-
tems is fundamentally important across various branches of
physics. The problem is extremely nontrivial and multi-
faceted due to the impact of quantum coherence and strong
interactions as well as other important ingredients, includ-
ing the underlying crystal lattice and/or disorder. Progress
has been achieved by constructing effective theories for
long-living modes of electronic systems. Such theories are
universal, i.e., insensitive to microscopic details and mostly
determined by qualitative aspects such as dimensionality,
symmetries, and topology. Paradigmatic examples of
effective descriptions are Landau’s Fermi-liquid theory
[1], the theory of superfluid liquids [2], and the theory
of diffusive modes in disordered conductors [3].
Recent advances in experimental techniques have made

available several systems [4–9] realizing (in a certain
temperature range) the hydrodynamic regime of electron
transport. In this regime, the dynamics is dominated by
electron-electron collisions (rather than by impurity or
electron-phonon scattering) and can be described by a
set of equations of hydrodynamic type governing the
evolution of conserved densities (a charge, momentum,
energy, etc.). Two aspects make such systems spectacular.
First, they exhibit electron transport that is profoundly
different from that observed in conventional Drude con-
ductors. It is manifested in the Gurzhi effect [10], spatial
nonlocality [11], and unconventional magnetoresistance

[12,13], see Refs. [14,15] for a recent review. Second,
topologically induced qualitative diversity of underlying
electronic spectra gives rise to unconventional hydrody-
namic regimes, such as relativistic hydrodynamics in
graphene [16].
The hydrodynamics of one-dimensional (1D) interacting

electrons is of special interest. It often involves an extended
(in integrable systems even infinite) number of conserved
hydrodynamic charges [17–23]. Furthermore, the reduced
dimensionality of the system greatly promotes hydrody-
namic fluctuations [24], which can invalidate the mean-
field hydrodynamic description at sufficiently long scales
and drive the system into a fluctuation-dominated regime
characterized by nontrivial scaling of physical observables
[25–28]. The relevance of fluctuational hydrodynamics and
in particular of the celebrated Kardar-Parisi-Zhang (KPZ)
model in the context of 1D electronic fluids was discussed
recently in Refs. [29,30].
In this Letter, we explore the full multimode fluctua-

tional hydrodynamics of 1D spinless fermions with short-
range interaction. Our focus is on real-time dynamics
and on thermal transport that was probed recently in
several closely related experimental setups [31–39]. We
confirm the frequency scaling of the thermal conductivity,
κ ∝ ω−1=3, advocated recently based on a self-consistent
kinetic theory of bosonic excitations (see Ref. [30] and
references therein). We find, however, that the earlier
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kinetic treatment fails to predict the correct dependence of
the prefactor in this scaling on temperature and other
parameters of the system.
To construct the nonlinear hydrodynamic description

of the system, we employ the bosonization technique
[40–43] taking into account the curvature of the electronic
spectrum (i.e., finite fermion mass m) [44–47]. Relaxation
processes in such a “nonlinear Luttinger liquid” were
analyzed in several works, see Ref. [48] for a review. It
was shown in Ref. [49] (see also Refs. [50–54]) that at
temperatures below Fermi-Bose duality temperature TFB ¼
1=ml2 [T < TFB < ϵF, where ϵF is the Fermi energy and l
is the range of the electron-electron interaction], thermal
excitations in a nonlinear Luttinger liquid are “composite”
fermions with renormalized Fermi velocity u ∼ vF, an
effective mass m� ∼m, and weak interactions vanishing
in the zero-momentum limit [55]. The composite fermions
are characterized by a long lifetime τF,

τ−1F ∼ l4T7=m2�u8: ð1Þ

Focusing on this low-temperature regime, we employ the
Hamiltonian of the composite fermions and derive the
corresponding kinetic equation [56]

∂NFðpÞ
∂t þ vFp

∂NFðpÞ
∂x ¼ Îp½NF�: ð2Þ

Here NF is a distribution function, vFp is the momentum-
dependent velocity of fermionic quasiparticles, and Î is the
collision integral. The hydrodynamic equations arise after
the projection of the kinetic equation on the zero modes of
the collision integral and are valid at scales larger than the
fermionic mean free path uτF. The collision integral in (2)
is nullified by Fermi-Dirac function nF½ðϵp − vp − μÞ=T�
with chemical potential μ, temperature T, and the boost
velocity v. These three parameters of the equilibrium
distribution correspond to the three exactly conserved
densities of the model: particle number, energy, and
momentum. Peculiarities of the 1D kinematics give rise,
however, to other quasiconserved quantities (soft modes of
the collision integral). First, equilibration of the particle
number between the left and right movers requires proc-
esses involving a deep hole near the bottom of the band. In
the bosonic description of the Luttinger liquid, such pro-
cesses correspond to the umklapp scattering and manifest
themselves only at exponentially long length scale [66–68]

Lu ∼ uT−3=2ϵ1=2F eϵF=T: ð3Þ

Thus, at scales shorter than Lu the system possesses four
conserved quantities (total energy, total momentum, and
two chiral number densities). Second, a detailed analysis of
collision processes leading to Eq. (1) shows that in such a
collision the energy and momentum exchange between the

chiral sectors is parametrically suppressed (compared to the
thermal energy or momentum) by a factor ðT=ϵFÞ2 ≪ 1
[56]. Correspondingly, at scales shorter than

L4 ∼ ðϵF=TÞ2uτF ð4Þ

the chiral sectors are effectively decoupled and six hydro-
dynamic modes exist in the system.
In the six-mode regime the particle densities, momen-

tum, and energies of each chiral sector are separately
conserved and we combine them into two chiral vec-
tors qT

η ¼ ðρη; πη; ϵηÞ, η ¼ R, L. We denote by ϕT
η ¼

T−1
η ðμη; vη;−1Þ the vector of the corresponding conjugate

thermodynamic variables. The conserved quantities obey
the continuity equations

∂tqiη þ ∂xJiη ¼ 0; ð5Þ

with index i specifying the conserved charge and the
corresponding flux, Jη ¼ ðJρη; Jπη ; JϵηÞ.
On the linear level, one relates

qηðω; kÞ ¼ χretη ðω; kÞϕηðω; kÞ; ð6Þ

via the polarization operator χreti;j;ηðx; tÞ ¼ −iθðtÞ×
h½q̂i;ηðx; tÞ; q̂j;ηð0; 0Þ�i. Similarly, currents can be repre-
sented in terms of current response function M,

Jηðω; kÞ ¼ Mηðω; kÞϕηðω; kÞ=ik: ð7Þ

In the ω ¼ 0, small-k limit, the matrix MηðkÞ ¼ ðikAþ
k2DÞχη is built out of matrices of velocities (A), dif-
fusion coefficients (D), and static susceptibilities χη ≡
χretη ðω ¼ 0; k → 0Þ. The velocity matrix A and the matrix
of static susceptibilities are thermodynamic quantities and
can be computed straightforwardly in the approximation
neglecting the composite-fermion interaction. The matrix
of diffusion coefficients D requires more work; it can be
obtained from the linearized kinetic equation (2). See
Supplemental Material [56] for explicit expressions for χ
and M.
To incorporate nonlinear effects into the hydrodynamic

description, we extend the expressions for hydrodynamic
currents by terms of second order in the conserved
densities:

Jη ¼ ðMη=ikÞχ−1η qη þ
1

2

X
i;j

Hη;i;jqiηq
j
η: ð8Þ

Here, we have taken the static limit ω ¼ 0 and the (vector-
valued) coefficients Hη;i;j can be computed neglecting the
interaction of composite fermions [56].
Equations (5), (6), and (8) describe the six-mode

hydrodynamics that exist at short length scales, L < L4.
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At longer scales, the collisions equilibrate the temperatures
and the boost velocities in the two chiral sectors. The
hydrodynamic theory of the four-mode regime can be
obtained through the reduction of the six-mode equations
by setting TL ¼ TR ¼ T, vL ¼ vR ¼ v and working with
the total energy and momentum densities, ϵ ¼ ϵR þ ϵL
and π ¼ πR þ πL.
At still larger length scales, L > Lu, the system reaches

equilibrium with respect to particle exchange between the
chiral sectors. The corresponding three-mode hydrodynam-
ics can be obtained through the reduction of the four-mode
theory by setting μL ¼ μR ¼ μ.
In the linear hydrodynamic approximation, the continu-

ity equations dictate that

χretη ðω; kÞ ¼ Mηðiωχη −MηÞ−1χη: ð9Þ

The information encoded in the polarization operator
enables one to compute the full set of kinetic coefficients,
accessible via linear-response measurements. At first
glance, the nonlinear terms in hydrodynamic equations
are irrelevant for the discussion of such linear-response
quantities. This conclusion is, however, invalidated by
hydrodynamic fluctuations arising due to finite temperature
that were so far neglected. Once the fluctuations are taken
into account, the nonlinear hydrodynamic couplings induce
strong renormalizations of bare kinetic coefficients, totally
modifying the linear-response characteristics of the system.
To account for fluctuations we promote the hydrody-

namic equations (5) to the Keldysh action (of Martin-
Siggia-Rose type) [56]. Since at hydrodynamic scales the
system is locally at equilibrium, the fluctuation-dissipation
theorem holds. Therefore, the retarded part of the polari-
zation operator χret determines also the Keldysh compo-
nents and thus the entire action at the Gaussian level. The
quadratic terms in the hydrodynamic currents (8) corre-
spond to cubic vertices in the action.
Following Ref. [27], we analyze the resulting Keldysh

action of fluctuational hydrodynamics within the mode-
coupling approximation [69]. To perform the calculation
it is convenient to pass to the eigenmodes of the line-
arized hydrodynamic theory. We define a new basis
Ψ ¼ Rq, where R diagonalizes the velocity matrix A,
RAR−1 ¼ diagðv1;…; vNÞ. Because of the mode separation
caused by different mode velocities, only diagonal corre-
lations survive in the long-time limit, and the Keldysh pair-
correlation functions of the eigenmodes

fjðx; tÞ ¼ hΨjðx; tÞΨjð0; 0Þi ð10Þ

satisfy the self-consistent Dyson equations [56]

ð∂t þ vj∂x − D̃j∂2
xÞfjðx; tÞ ¼

Z
∞

−∞
dy

Z
t

0

ds

× fjðx − y; t − sÞ∂2
yRjðy; sÞ:

ð11Þ
Here

Rjðy; sÞ ¼
1

T5

XN
l;m¼1

λ2jlmflðy; sÞfmðy; sÞ; ð12Þ

D̃j are diagonal elements of the effective diffusion matrix D̃
describing broadening of eigenmodes, and coupling con-
stants λjlm account for the mode interaction. These con-
stants are computed from microscopic parameters of the
original fermionic model [56].
We now employ this theory to study pulse propagation in

an electronic fluid as well as its linear-response properties.
We consider the time evolution of a generic disturbance

created in a limited region of the fluid. Because of energy
relaxation for times longer than fermionic energy relaxation
time τF, any disturbance is fully projected onto eigenmodes
of the collision integral. At times shorter than L4=u, this
yields six hydrodynamic modes Ψj. The degree to which
the modes are excited depends on the overlap of the dis-
turbance with Ψj. These modes give rise to six ballistic
pulses propagating through the fluid. Because of differen-
ces between the mode velocities, Δuij ≡ ui − uj, the
separation between the peaks grows linearly with time,
Lij ¼ Δuijt. The width of each peak is broadened, within
the linear hydrodynamics, by the corresponding diffusion
process as ðD̃jtÞ1=2. The nonlinear couplings further
broaden the shape of the pulses and modify their shape.
At L ∼ L4, the number of hydrodynamic modes is reduced
to four and the pulses are reshaped into four peaks. In the
four-mode regime all nonlinear couplings are of the
same order, λijk ∼ λ≡ Tu3=2. However, only the interaction
between modes propagating in the same direction is sig-
nificant. Thus, Eq. (11) splits into two sets of chiral
equations. Comparing the linear and nonlinear terms in
Eq. (11) one finds that nonlinear broadening dominates
over the normal diffusion at scales beyond L� ¼ u13=
l12T13 ≫ L4. The same conclusion is reached by analyzing
the RG flow [56]. Essentially, at this stage, one can drop the
bare diffusion terms in Eq. (11).
Near the maximum of any given mode, the coupling

to other modes is parametrically small and to the first
approximation can be neglected. Equation (11) describes
the long time limit of the pair velocity correlation function
in the stochastic Burgers equation and the corresponding
KPZ problem [70]. Thus, near the maximum

fiðx; tÞ ∼
T2

ðλtÞ2=3 fKPZ
�
Tðx − uitÞ
ðλtÞ2=3

�
: ð13Þ
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Here fKPZðxÞ is the universal dimensionless KPZ function,
with fKPZðxÞ ∼ 1 for jxj ≤ 1 and fKPZðxÞ ∼ e−0.3jxj3 for
jxj ≫ 1 [71,72]. Away from the maximum the interaction
between modes plays a role and creates nonsymmetric
power-law tails [56], see Fig. 1. The fast modes develop
power-law rear tails, while slow modes develop power-law
front and rear tails:

fiðx; tÞ ∼
X
j

θ½ðx − uitÞsgnðΔujiÞ�u2
�

T
jΔujij

�
1=3

× tjx − uitj−8=3 for jx − uitj ≫
ut2=3

T1=3 : ð14Þ

One may interpret this as a propagation of one degree of
freedom away from its light cone via the interaction with a
faster or slower degree of freedom. In Eqs. (13), (14) and
below we omit numerical coefficients of order unity, as
emphasized by the sign ∼ replacing the equality sign.
At distances larger than Lu, the fluid is described by

three hydrodynamic modes. This is a universal regime
representing the ultimate infrared fixed point of any non-
integrable system. It is characterized by two ballistic sound
modes (index j ¼ 2, 3) and one static (i.e., zero-velocity)
heat mode (j ¼ 1). The pulse propagation in such a regime
was analyzed in the context of classical fluids in
Refs. [26,27,73]. The sound mode acquires the KPZ shape,
Eq. (13). For the corresponding self-coupling constant we
find λ≡ λ222 ∼ T4=m3u9=2. Because of the time-reversal
symmetry, the self-coupling of the heat mode is identically
zero. Therefore, in the absence of the intermode coupling,
the spread of the heat mode would be diffusive. The
nonlinear interaction between the heat and sound mode,
which is characterized by a coupling λ122 ∼ T3=m2u5=2,
leads to the formation of power-law tails for the heat and
sound modes [56]. It transforms the heat mode into
symmetric Levy-flight distribution with α ¼ 5=3,

f1ðx; tÞ ∼
T

δxðtÞ fLevy;α¼5=3

�
x

δxðtÞ
�
: ð15Þ

The heat mode has a maximum at x ¼ 0 and the width
δxðtÞ ∼ t3=5T4=5m−6=5u−7=5. The t3=5 scaling of the width

was also obtained in the context of classical anharmonic
chains [74,75]. The value at the maximum is f1ð0; tÞ∼
T=δx. Away from the maximum (for x ≫ δx) the heat
mode has power law tails [76] that scale as f1ðx; tÞ ¼
ðT7=3=m2u7=3Þtx−8=3, implying anomalous heat diffusion.
We now consider the linear response properties of the

electronic fluid. Generally speaking, an N-component
liquid has NðN − 1Þ=2 independent linear response coef-
ficients, that can be computed via the Kubo formula [56].
The anomalous scaling observed in the pulse propagation
problem manifests itself through the linear response coef-
ficients as well. To be specific, we focus on thermal
conductivity, a quantity that describes the rate of irrevers-
ible heat propagation. To compute the thermal conductivity,
one needs first to define the heat current. In interacting
many-body problems, expressions for heat currents are in
general rather complicated and spatially nonlocal. Luckily,
the operator of heat current JT for fluids is local and can be
computed by subtracting an advective contribution from the
energy current JE [77],

JT ¼ JE − w̄Jρ; ð16Þ

where w̄ is the enthalpy of the fluid per one electron and Jρ
the particle current. The Kubo formula for thermal con-
ductivity reads [78]

σTðω; kÞ ¼
1

−iωT
½KTTðω; kÞ − KTTð0; 0Þ�; ð17Þ

where KTTðω;kÞ¼−ih½ĴTðx;tÞ; ĴTð0;0Þ�iretðω;kÞ. Employ-
ing Eq. (17) and setting k ¼ 0, we find [56] that in the six-
mode regime

σTðωÞ ¼ −
π2uT
3iω

þ π2u
6m2l4T2

: ð18Þ

The Drude peak corresponds to the ballistic propagation of
heat [79,80], while the real part of conductivity is due to
heat diffusion. As the system enters the four-mode regime,
the propagation of all modes remains ballistic. Hence, the
imaginary part of the heat conductivity is unchanged,
ImσTðωÞ ¼ π2uT=3ω. The real part of the heat conductivity,
on the other hand, is renormalized. The effects of the
renormalization are associatedwith an anomalous broadening
of the pulses, with two contributions coming from the head
and the tails of the peak. Both happen to be of the same order
and lead to

ReσTðωÞ ∼ uT1=3ω−1=3: ð19Þ
Finally, we discuss the three-mode regime, where the heat
conductivity is determined solely by the static mode.
Therefore, the ballistic contribution is suppressed, giving
rise to an exponentially large constant: i=ω ↦ τU. The real
part of the thermal conductivity thus scales as

FIG. 1. Schematic shape of pulse evolution through four and
three mode regimes. The scaling of the heads and tails of the
peaks with time is depicted, see text for details.
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ReσTðωÞ ∼ uTτU þ T7=3

m2u3
ω−1=3: ð20Þ

To assess the experimental relevance of the above-
studied physics, we estimate characteristic scales for a
single-wall carbon nanotube. For the Coulomb interaction
[81] and T ∼ 10–100 K, the electron-electron scattering
length where the hydrodynamic regime starts is uτF ¼
lee ∼ 10−6 − 10−7 m. The electron-phonon energy relaxa-
tion length observed experimentally at room tempera-
ture [82,83] is le-ph ≃ 10−5 m; lowering T down to T ∼
10–100 K will lead to its further strong increase, thus
allowing for electronic fluid to form. For the gated device
with ϵF ¼ 200 K, the transition to the four-mode regime
should occur at L4 ∼ 10−4 − 10−7 m.
While the physics studied here is very generic, the model

considered above is a minimal one. In a real experiment, the
physics may be enriched by additional degrees of freedom.
In particular, inclusion of spin will double the number
of approximately conserved hydrodynamic charges, with
early stages of evolution where spin and charge are
decoupled. Similarly, fabrication based on narrow channel
devices [84] will yield modes with different transversal
quantization.
To summarize, we have developed a multimode hydro-

dynamic approach for the electronic fluid. Depending on
the number of conserved charges, the fluid has six, four, or
three hydrodynamic modes. Though the three-mode regime
is an ultimate long-distance fixed point, it is only reached at
exponentially long distances, leaving room for an expo-
nentially long four-mode viscous hydrodynamic regime.
The interaction between the hydrodynamic modes leads

to the renormalization of transport coefficients, giving rise
to universal scaling behavior, and shapes of the pulses
propagating through the fluid. In the six- and four-mode
regimes, all pulses propagate ballistically. The “head” of
every pulse is controlled by self-interaction, resulting in a
KPZ scaling of pulse width (t2=3) and amplitude (t−2=3)
with time. Interaction between the modes propagating with
different velocities results in power-law tails scaling as
x−8=3 with distance x from the mode center and directed
towards another mode. As the system reaches a three-mode
regime, the pulses redistribute, and a static heat and two
ballistic sound peaks are formed. The width of the ballistic
modes has KPZ scaling with time. The interaction between
the sound waves and the heat mode gives rise to power-law
tails for all peaks. Each sound mode acquires a rear tail. The
static heat mode is a Levy flight function with α ¼ 5=3,
with symmetric tails. The anomaly in peak shapes leads to
anomalous kinetic coefficients, in particular, the thermal
conductivity.
We conclude by comparing the results of the present

analysis for σT with earlier calculations performed within
the self-consistent kinetic approach [30]. Reassuringly,
both approaches yield two regimes of anomalous scaling

of σT separated by the scale LU. Further, the kinetic
approach yields for these regimes results analogous to
Eqs. (20) and (19), with the same ω−1=3 scaling. Such
agreement in scaling resulting from self-consistent kinetic
[24,29,85] and classical renormalization-group [25]
approaches has been known for a long time. This agree-
ment is highly nontrivial and perhaps even puzzling.
Indeed, although our starting point here is a transport coef-
ficient computed within fermionic kinetic theory [30,86],
the subsequent analysis in this work and Ref. [30] is very
different. In the kinetic framework of Ref. [30], the ω−1=3

scaling results from subthermal bosons with wave vectors
k ≪ T=u that can propagate anomalously large distances
without scattering. At the same time, in the present frame-
work, this enhancement of thermal conductivity results
from the interaction between bosonic (hydrodynamic)modes
leading to anomalous hydrodynamics. Importantly, while the
frequency scaling agrees in the two approaches, the pre-
factors (in particular, the temperature scaling) are essentially
different. Effects of renormalization controlling results of the
present work turn out to be dominant for σT, in both four-
mode and three-mode regimes.

D. G. was supported by ISF-China 3119/19 and ISF
1355/20.

Note added.—Recently, we learned about a paper [87] that
studies the linear hydrodynamics in the six-mode regime.
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