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Generating a Topological Anomalous Hall Effect in a Nonmagnetic Conductor:
An In-Plane Magnetic Field as a Direct Probe of the Berry Curvature
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We demonstrate that the Berry curvature monopole of nonmagnetic two-dimensional spin-3/2 holes
leads to a novel Hall effect linear in an applied in-plane magnetic field B. Remarkably, all scalar and spin-

dependent disorder contributions vanish to leading order in B, while there is no Lorentz force and hence no

ordinary Hall effect. This purely intrinsic phenomenon, which we term the anomalous planar Hall effect
(APHE), provides a direct transport probe of the Berry curvature accessible in all p-type semiconductors.

We discuss experimental setups for its measurement.
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Introduction.—Topological responses are ubiquitous in
solids but isolating them is a difficult task. Quantized
responses, such as the quantum Hall and quantum spin-Hall
effects [1-4], provide a clear fingerprint of topology, yet
these have been observed only in one-dimensional (1D)
systems and are intimately connected with the existence of
edge states [1-8]. In 2D and 3D conductors a hotly debated
topological response occurs in the anomalous Hall effect
(AHE), where the Berry curvature mechanism has never
been detected unambiguously. Originally observed in
ferromagnets, the AHE was shown to exist in paramagnetic
materials as well [9], where the Berry curvature contribu-
tion is strong. Although the Berry curvature can lead to a
quantized response [5—7,9—15] such quantization is impos-
sible to observe in practice for two main reasons. First, the
dispersion involves an even number of Zeeman-split
Kramers pairs that make opposite contributions, yielding
a nonuniversal conductivity that is often density dependent
[12,16—18]. Second, disorder is unavoidable [19,20]: scalar
disorder reduces and occasionally wipes out the Berry
curvature contribution, while spin-dependent scattering
overwhelms the remainder. The manifold contributions
to the AHE have been debated for three quarters of a
century [9-12,18,19,21-31], and controversy surrounds it
even as it opens new avenues of research [32-37].

In this Letter we provide a smoking gun in this lengthy
debate by identifying a system in which the Berry curvature
can be unambiguously detected in transport. We show that a
Hall effect is generated in a 2D heavy-hole system grown
along a low-symmetry direction when an in-plane magnetic
field B is applied. In the absence of an out-of-plane
magnetic field and therefore of a Lorentz force, there is no
ordinary Hall effect. Instead, an anomalous Hall effect
occurs due to the finite Berry curvature of the spin-3/2 hole
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system. The gap in the dispersion that enables the Hall
response is opened by a shear Zeeman term in the Lande ¢
tensor [38,39]. Our central result is the Hall conductivity
o,y linear in By, shown in Figs. 1 and 2 and expected from
the Onsager relations. We refer to this phenomenon as the
anomalous planar Hall effect (APHE). Its origins are
intrinsic and topological: remarkably, neither scalar nor
extrinsic spin-orbit scattering contributes to leading order
in B. Because the equilibrium system is not magnetized
the effect is tunable in situ by altering the magnetic field
orientation. It is observable in state-of-the-art hole samples,
which have been developing at a brisk pace. Part of the
motivation stems from quantum computing applications
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FIG. 1. Intrinsic Hall conductivity vs in-plane magnetic field

for different materials, for a symmetrically biased quantum well

grown along (113) of width 20 nm. The Fermi energy is 5 meV,
the carrier densities ~#5-25 x 10'© cm™2.
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FIG. 2. Intrinsic Hall conductivity versus in-plane magnetic

field for an asymmetrically biased well || (113) with top gate field

E, =5 MV/m and well width of 20 nm. The Fermi energy is
5 meV, the carrier densities ~5-25 x 10'0 cm~2.

[40-57], in which holes are actively investigated [58—60],
as well as from their large spin-orbit coupling [61-63] and
unconventional spin-3/2 nature [64—77], leading to trans-
port characteristics with no counterpart in spin-1/2 electron
systems [78-82].

We consider a 2D hole gas grown along (113). Our
findings hold for a multitude of low-symmetry growth
directions, and (113) is chosen as an example. The ground
state is the heavy hole manifold, where heavy holes
have spin projection +3/2 onto the quantization
axis, perpendicular to the plane. At normal transport
densities the light hole manifold is not occupied. Our
results are obtained using the Luttinger Hamiltonian rotated
along the growth direction (113) with the vertical con-
finement modeled by the Bastard wave function, given
in the Supplemental Material [83]. Nevertheless, the
underlying physics can be understood from the effec-
tive Hamiltonian for the lowest heavy hole subband
Hhh = Eok +Hs +HC = Eok —+ (fl/Z)G Qk, Where Eok —
h’k?/(2m*) and o is the vector of Pauli spin matrices;
m* is the heavy-hole in-plane effective mass and & is the in-
plane wave vector. The term H, captures the leading
contributions to the Rashba and Zeeman effects, which
stem from the spherical terms in the Luttinger Hamiltonian
[84-90], as well as the out-of-plane Zeeman term, which
stems from the cubic symmetry of diamond and zinc blende
lattices [39]. Written in full,

H, = ia(c k> —6_k3) + A (6, B_k* +6_B,k?)
+ Ay (6, Bk +6_B_k%) + Ask* (6B, +o_B_)
+ A4<6+B—ki + O-—B-&-k%) + Azxngxv (1)

where «a is the Rashba spin-orbit constant in the spherical
approximation; k. = k, £ iky; By =B+ iBy; and A,

A,, As, and A, are effective Lande g factors [89-91], with
Aj and A, present only in asymmetric wells [89,90]. The
shear Zeeman term A_ .o B, is vital [38,39], yielding an
out-of-plane Zeeman splitting in response to an in-plane
magnetic field that henceforth we assume to be [|%, where
£(/(332). Cubic symmetry leads to the following additional
spin-orbit terms:

H. = 0.k, + o k,(11k; — 49k3)
+inz(o k. —o_k,). (2)

Here 7, has contributions from the Dresselhaus terms
x Cp, Bp; in Ref. [88], n, « Bp;, while 73 has contribu-
tions from both Dresselhaus and cubic-symmetry terms.
Dresselhaus terms are absent in diamond lattices such
as Si and Ge but are noticeable in zinc blende materials
such as GaAs and InAs. In the Supplemental Material [83]
we find that diamond and zinc blende quantum wells have
comparable Rashba splittings at realistic transport den-
sities. All spin-dependent interactions can be incorporated
into an effective field €. The eigenvalues of H,, are
e = Eor = R[] We assume Qpz> 1, with Qp the
value of € on the Fermi surface and r the momentum
relaxation time.

We focus first on the Hall current due to H,, which
provides the dominant contribution. The effects of the
much smaller terms contained in H,. [88], as well as
disorder, are discussed in the closing section. The
Zeeman term for heavy holes also includes the terms
10 Bﬁ, yet these are three orders of magnitude smaller than

the Bj-linear terms above, becoming important only for
B 230 T. The coefficients in Eqgs. (1) and (2) are
functions of k and decrease strongly at larger wave vectors.
Such momentum-dependent Zeeman terms with different
winding numbers are likewise specific to heavy holes, since
these correspond to the £3/2 projection of the hole
spin-3/2 onto the quantization axis [81]. They have no
counterpart in electron systems. In our evaluations
of the Hall conductivity for Figs. 1 and 2 this k dependence
is circumvented by using the full 4 x4 Luttinger
Hamiltonian.

Unlike the ordinary Hall effect driven by the Lorentz
force, the charge dynamics here originate in the spin
locking to the wave vector. As a hole is accelerated
longitudinally its wave vector changes and it experiences
a different spin-orbit field. As a result of this the
spin undergoes a rotation, which in turn produces a
change in the wave vector that is perpendicular to the
longitudinal motion, in other words, a Hall current. The
intrinsic Hall conductivity, derived below, is given by
6y, = —(e?/h) [d*k/(27)F?, where the Berry curvature
of subband n is F,, = —Im(du,,/OKk| x |0u,,/Ok), with u,,
the lattice-periodic Bloch wave function, whose role is
played here by the envelope function. The full effect as a
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FIG. 3. The in-plane dispersion of the two spin-split HH
subbands for a 2D hole gas grown along (113) with an in-plane
magnetic field. (a) Symmetric well. (b) Asymmetric well.

function of magnetic field, including its material depend-
ence, is shown in Fig. 1 for a symmetric well and in Fig. 2
for a strongly asymmetric well, in which the Rashba
interaction dominates. The form and behavior of the
Hall conductivity are understood by noting that (i) the
shear Zeeman term opens a gap, which makes the Berry
curvature nonzero; (ii) the spin-split bands have different
Fermi wave vectors; and (iii) the sign of the Berry curvature
is determined by the winding direction of the spin-orbit
field €, with the Rashba, in-plane Zeeman and the
Dresselhaus terms all yielding the same sign. However,
for different low symmetry growth directions these con-
tributions can yield different signs. We first provide a
pedagogical analytical explanation for these two limiting
cases: a symmetric well with a single in-plane Zeeman term
expected to dominate at small densities and a strongly
asymmetric well. For simplicity we use constant coeffi-
cients to derive approximate analytical expressions for 6,
noting that this pedagogical approach is restricted to very
small densities and magnetic fields. The dispersions for
these two cases are sketched in Fig. 3.

In a symmetric well in Si and Ge, given that there is no
a priori spin-orbit coupling, the Berry curvature is initially
zero. When the in-plane magnetic field is applied, the
Zeeman terms « A;, A, give rise to a nonzero Berry
curvature at each k, while the Zeeman term « A_, opens
a gap in the spectrum. Interestingly, the Berry curvature
itself is independent of By, although it depends explicitly
on the in-plane and out-of-plane g factors. Since the heavy-
hole subband is now spin split by the out-of-plane Zeeman
interaction there are two different Fermi wave vectors. The
difference between them is linear in the magnetic field at
low fields, as shown in the Supplemental Material [83];
hence the conductivity is linear in B. With only the A, and
A, terms, the Hall conductivity reads

2 2,42
e 8A  ATm*ep

6, =—B (3)
X Il 2,22 |
BRI

which increases monotonically with By . In GaAs and InAs,
on the other hand, the Dresselhaus terms cause Oy tO be

nonlinear at small fields but their contribution to the Berry
curvature is eventually overwhelmed by the in-plane
Zeeman terms as B increases.

In an asymmetric well the Berry curvature is likewise
zero in the absence of the out-of-plane Zeeman interaction.
Nevertheless, the heavy hole subband is already spin split
by the strong Rashba spin-orbit interaction even before the
magnetic field is turned on, so that there is a sizable
difference between the two Fermi wave vectors. The
Rashba interaction overwhelms all other terms, as shown
recently [88]; hence the plots for the asymmetric well
increase monotonically for all materials. When the Zeeman
term o< A, opens a gap a significant Hall current emerges.
With only the Rashba and A, terms, the Hall conductivity
takes the form

e? 3A 1 1
=SB (=) (——-—). 4
=) (g ) @

The Fermi wave vectors kp. =~ ((2m*ep/h*) F

(4v2am* /23 /15))1/2 differ due to the Rashba inter-
action, while their magnetic field dependence is negligible.
Because of this, when the spin-orbit energy Qp > A_ B,
but is still much less than the kinetic energy, o, is
approximately independent of spin-orbit strength. This
insight is more general than just the Rashba case and
explains the relative smallness of the effect and its
comparable size in all materials studied. The APHE is
driven by the cubic-symmetry and bulk Zeeman terms,
which are strongest in InAs and Ge. In a realistic sample we
expect py, ~ 100-500 pL2.

Experimental measurement.—A schematic of an exper-
imental setup that could be used to measure the APHE is
shown in Fig. 4. To identify the Berry curvature terms
experimentally, one can start with a (113) quantum well
with a top and bottom gate that enables full control of the
Rashba interaction [38,92,93] and apply an in-plane mag-
netic field to introduce the Zeeman interactions (1). The
Berry curvature terms can be detected through the Hall
voltage, which depends directly on o,,. As the magnetic
field is rotated in the plane the Hall current will disappear,
since A, = 0, enabling one to turn the APHE on and off
in situ. The fact that heavy holes along (113) do not exhibit
a Zeeman response to a magnetic field ||y reflect their weak
interaction with an in-plane magnetic field, which vanishes
for structures grown along the main crystal axes. As the
magnetic field is rotated out of the plane the APHE will
give way to the ordinary Hall effect.

Methodology.—The full Hamiltonian H=H},;,+Hg+U.
The driving electric field E||y is contained in Hy = ¢E - .
The scattering potential U(r) = >, U(r — R;); includes
both scalar and extrinsic spin-orbit scattering [94], where
R; indexes the random locations of impurities; and the
scattering potential due to a single impurity is denoted by
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2DHS Back gate

FIG. 4. Experimental setup for measuring the APHE. A
magnetic field |[(332) will cause a Hall current. Rotating it to
(110) will cause the Hall current to disappear.

U(r). In Fourier space, Uy = Ul + Vi, where
U tepresents a matrix element between plane waves,
and Vi = —(il/2)o - (0 X k' —wp x k)Uy, where
wy, = k*(cos 30,sin360,0), assuming Ak} < 1. Because
the Rashba Hamiltonian is derived from the Luttinger
Hamiltonian in the spherical approximation it has the same
form along (113) as along (001), and thus the extrinsic spin-
orbit scattering term has the same form as in Ref. [94]. As
written in the Pauli basis, the spin-dependent term Vi
points out of the plane. We note that A for holes has not been
determined quantitatively. We consider short-range
scattering off uncorrelated impurities, with the average
of (kn|U|k'n')(k'n’Ulkn) over impurity configurations
n;|U|?/V, where n; is the impurity density and V the
crystal volume.

We derive a quantum kinetic equation as described in
Refs. [20,95]. The density matrix p is found in the basis
{kn}, where n represents the band index. To determine the
charge current we require fy, the part of the density matrix
diagonal in wave vector, because the current operator is
diagonal in k. From the quantum Liouville equation,
Op/0t + (i/h)[H, p] = 0, we obtain the following kinetic
equation describing the time evolution of f}:

Ofk

T [Hhh Sl +I(fe) =

DE,kv (5)

where the scattering term in the Born approximation

IHhhf

0 = G [ arto. 0. Fle R, o)

n? Jo
and the driving term Dpj; = (eE/h) - (Dfy/Dk). The
covariant derivative D fq/Dk = Ofo/0k — i[Ry, fox]
arises from the k dependence of the basis
functions. The Berry connection matrix elements R,’C”’"’ =
(U li(Oull’ /Ok)), with m # m' necessarily, are interband
matrix elements of the position operator, which also appear
in the current density operatorj = —(e/h)DH;,/Dk. In an
external electric field one may decompose f; = fox + fEk
where f( is the equilibrium density matrix and fg is a

correction to first order in the electric field. The
equilibrium density matrix is for = (1/2)[(frs + fx)1+
6.(fxs — fx—)], where f;. represent the Fermi-Dirac dis-
tributions over subband energies g, and the tilde in &,
denotes the basis of eigenstates of the band Hamiltonian. In
linear response one may replace f; — for in the driving
term Dgy. With fo, known and Dpgy on the right-hand
side of Eq. (5), we obtain fp;. By taking the trace with
the current operator, the longitudinal and transverse
components of the current are found. The off-diagonal
part of the density matrix contains the intrinsic term
S’ = —inP[D (eff — &), with P the principal part,
and this yields directly the intrinsic Hall conductivity as
introduced above.

Disorder contributions.—Disorder is responsible for a
complex series of contributions to the Hall conductivity,
which in related models tend to reduce the Hall effect or
cancel it altogether [19,20]. Disorder contributions fall into
two categories: those stemming from scalar disorder and
those from spin-dependent disorder. The former exist
because of interband coherence induced by the electric
field, which causes even scalar disorder to contribute to the
Hall effect through an anomalous driving term

S (G AL )

o
—&)l. (7)

Here we have singled out the band- diagonal term in the
density matrix, n'”m x & To find D' g,’f , we first solve
for ngy, feed it 1nt0 the scattering term Eq. (6), and take the
band off-diagonal part. When calculated explicitly this
contribution is identically zero for both symmetric and
strongly asymmetric wells for both the spherical Rashba
interaction and the Zeeman terms.

The spin-dependent disorder term Vy, gives rise to four
contributions: skew scattering, side jump, anomalous spin
precession, and the anomalous scattering term. These are
described in detail in Ref. [94] for the spin-Hall effect, and
the method here is exactly analogous. Because of the large
winding numbers involved the anomalous spin precession
and the anomalous scattering terms are zero for holes, while
skew scattering and side jump contribute only to order B} I

+(nig — nig)d(ey”

These terms cause hole up and down spins to scatter
predominantly in different directions, but after scattering
the spins precess under the action of the band structure
spin-orbit field, so their contribution to the Hall effect is
washed out to first order in B. We also find the contri-
bution from J;(Sg) to be imaginary. The extrinsic term
linear in B vanishes because (i) the Zeeman terms and the
extrinsic spin-orbit effective field have large winding
numbers and (ii) the extrinsic spin-orbit field points out
of the plane. Consequently, with the Rashba interaction
evaluated in the spherical approximation, and in the
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absence of Dresselhaus terms, there are no disorder con-
tributions to the APHE.

We investigate the contributions due to the Dresselhaus
and cubic-symmetry Rashba term. The term « #5 in Eq. (2)
is linear in the wave vector; therefore its contribution to the
intrinsic part of the Hall current is canceled exactly by the
scalar disorder term in the same way as the linear Rashba
term in electron systems [19,20]. It does not contribute to
the extrinsic signal because it generates a spin-orbit field
that is purely in the plane. The Dresselhaus terms make a
contribution to the Berry curvature, which is noticeable
only in symmetric wells, as discussed above. Since the
Dresselhaus spin-orbit field « 7, 17, points out of the plane,
it does not contribute to the extrinsic signal through the
anomalous scattering term Jq, (ng ). It does not contribute
to the Hall current through the anomalous driving term
either. The only way a nonzero contribution to the current
can emerge is through products of the Dresselhaus terms
and cubic symmetry terms, which will then be multiplied
by the small parameter 1k} << 1. Therefore, in Si and Ge
the extrinsic contribution to the APHE vanishes altogether,
while in InAs and GaAs it is negligibly small.

In summary, we have shown that low-symmetry growth
hole nanostructures exhibit a purely Berry curvature—driven
Hall effect in response to an in-plane magnetic field. The
APHE may open new pathways in the electrical operation
of spin qubits and spin-orbit torques.
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