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Investigations of plastic deformation and yielding of amorphous solids reveal a strong dependence of
their yielding behavior on the degree of annealing. Above a threshold degree of annealing, the nature of
yielding changes qualitatively, becoming progressively more discontinuous. Theoretical investigations
of yielding in amorphous solids have almost exclusively focused on uniform deformation, but cyclic
deformation reveals intriguing features that remain uninvestigated. Focusing on athermal cyclic
deformation, I investigate a family of models, which reproduce key features observed in simulations,
and provide an interpretation for the intriguing presence of a threshold energy.

DOI: 10.1103/PhysRevLett.126.255501

Amorphous solids of a wide variety are of scientific and
technological importance. Apart from hard glasses such as
oxide glasses, metallic glasses, etc., the broad spectrum of
amorphous solids also includes soft materials such as
colloidal assemblies, gels, emulsions, and pastes [1,2].
How such solids respond to external stresses is equally
diverse, understanding which is of interest for many
reasons—whereas plastic deformation leading to mechani-
cal failure may be a phenomenon to predict and prevent for
structural materials, controlling elastoplastic flow proper-
ties is of interest in the case of soft materials [1]. A general
description of the mechanical response of amorphous solids
needs to take note of the microscopic structural disorder
and account for the apparent diversity of responses.
The nature of elementary processes of plasticity, inter-

actions between them, the nature of the yielding transi-
tion, and the dependence of the mechanical response on
preparation history, have been actively investigated over
the years [3–16]. In particular, computer simulations of
athermal quasistatic shear deformations [11–13,17–20],
employing both uniform and cyclic shear protocols, reveal
that the character of yielding depends strongly on the initial
degree of annealing of the solid. Under uniform shear,
the evolution of stress with strain is gradual for poorly
annealing glasses, whereas well annealed glasses display
both a stress overshoot and a discontinuous jump down to
the flow stress, with the strength of discontinuity growing
with annealing, above a threshold degree of annealing.
Such variation of yielding behavior with annealing has
been suggested as a framework to understand the observed
diversity among amorphous solids [12].
In the case of cyclic shear, poorly annealed glasses,

above a threshold energy (or equivalently, below a thresh-
old degree of annealing), anneal toward a threshold
energy with increasing amplitude of strain, before yielding
[11,13,18], accompanied by shear banding [21] (as also
for uniform shear). Initially well annealed samples with

energies below the threshold do not show any appreciable
change in properties until they yield discontinuously.
Above yielding, the properties do not depend on the initial
sample history. Interestingly, the number of cycles required
to reach the steady state increases strongly as the strain
amplitude approaches, and possibly diverges at, the yield-
ing amplitude [6,11,22]. These features are schematically
summarized in Fig. 1.
Based on the observations that plastic deformation

involves spatially localized arrangements (termed shear
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FIG. 1. (Top) Schematic representation of yielding behavior
under cyclic shear. (Left) Dependence of steady state energy on
strain amplitude γmax for different initial energies. (Right) Time
required to reach the steady state vs strain amplitude γmax.
(Bottom) A schematic description of the model. The minimum
(Emin) and maximum (Emax) energy, strain at which energy is
minimum (γ0) and the stability range (Δγ) are indicated for one
mesostate (black), from which transitions are possible to two
other mesostates shown (blue, orange) but not to the third (red).
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transformation zones), and that they lead to the generation of
long range stress fields, a variety of elastoplasticmodels [2]
have been developed and studied, aiming to capture macro-
scopic deformation response, through a combination of a
coarse-grained description of local plasticity, and a con-
tinuum description at larger length scales. Attempts have
been made to incorporate the role of annealing in such
models, for uniform shear [12,15,16,23], but response
to cyclic shear remains largely unaddressed. In particular,
features exhibited by athermal cyclic shear, including
mechanically induced aging or annealing, the presence of
a threshold energy across which the character of yielding
changes, the apparent divergence of timescales have not been
demonstrated to arise in suchmodels. One may well demand
that a satisfactory elastoplastic model be able to capture such
phenomena, capture both athermal and thermal effects, and
have the potential to parametrically incorporate material
specific properties. The ability to capture memory effects
seen in cyclically sheared glasses would be another desirable
feature [24,25]. Such expectations point to an energy based
model [26–29] (such as the soft glassy rheology or SGR
model [26]), rather thanmodels defined in terms of threshold
stresses, as with typical elastoplastic models.
The models studied here are defined in terms of the

distribution of states or energy minima that a mesoscale
block of an amorphous solid can be in, and rules for
transitions between them. Inclusion of an extended array
for such blocks and interactions between them along
previously developed lines [2] is an obvious next step
but is not pursued here. Each state (termed a mesostate and
investigated in detail in [25]) is characterized by (i) an
energy E0 (taken to be negative always) at a strain value γ0
at which the energy is minimum, (ii) a stability range in
strain over which it is stable, and (iii) a form for the
variation of the energy with strain (see Fig. 1 for an
illustration). These characterizations can be made in prin-
ciple in material specific ways. Here, I choose the stability
range to be γ� ¼ γ0 �

ffiffiffiffiffiffiffiffiffi
−E0

p
, and the energy at a given

strain within the stability range as Eðγ; E0; γ0Þ ¼ E0 þ
ðμ=2Þðγ − γ0Þ2. These choices embody the expectation
(supported by numerical evidence [13]) that the stability
range as well as the elastic energy rise before instability
increase upon lowering the minimum energy. I consider a
Gaussian distribution of energies, P0ðE0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2=πσ2

p
×

expð−E2
0=2σ

2Þ, for −1 < E0 < 0, σ ¼ 0.1 [30,32].
For a given energy E0, it is assumed that one has

mesostates with several possible values of the stress-free
strain γ0, reflecting the fact that distinct configurations of
the same energy may exist, with different strain values at
which they are stable [33]. For concreteness, two specific
cases are considered here: (1) The regular case, where
mesostates have γ0 ¼ n × 2

ffiffiffiffiffiffiffiffiffi
−E0

p
, n being an integer, so

that mesostates at a given energy are present in a periodic,
nonoverlapping fashion. (2) The uniform case, where the γ0
values are uniformly distributed.

When the stability limit γ� is reached, the state of the
system makes a transition from the current mesostate to
another. In the athermal case, clearly, such a transition is
possible only to other states with lower energy at the same
strain value (see Fig. 1). Depending on the E0 and γ0 values
of the other states, a transition may occur to mesostates
with higher or lower E0, a key feature for the behavior
described below. One may consider a transition rule that
permits transitions to (i) any mesostate with a lower energy
at the transition strain, or as a physically motivated choice,
(ii) restrict the range of E0 values to which transitions
are permitted, within a range δE. Both these cases are
considered.
The case of regular distribution of γ0 is considered first,

with a choice of μ ¼ 1.1. The evolution of the system as
strain is varied involves a deterministic variation of energy
according to the expression for Eðγ; E0; γ0Þ above, and a
stochastic change in state when the mesostate becomes
unstable upon reaching the strain values γ�. This evolution
is investigated numerically as follows. Starting with an
initial energy E0, and γ0 ¼ 0, the strain γ is varied cyclically
with amplitude γmax, and the state of the system is
propagated until a stability limit γ� is reached. When this
happens, the set of all states to which a transition can occur,
with the corresponding weights [given by P0ðE0Þ; in
practice, the E0 range is divided into 104 bins] is evaluated,
and a new state, with its E0 and γ0 values, is randomly
chosen among permitted states. The procedure is repeated
for 103 cycles of shear. If the state of the system does not
change at the end of successive cycles, the procedure is
terminated. Otherwise, the zero strain energies for the last
200 cycles are averaged. This procedure is repeated for 103

independent sample runs. Figure 2(a) shows the resulting
final energies as a function of both a set of initial energies
and strain amplitudes. Strikingly, all the essential obser-
vations from simulations are reproduced. For high initial

0 0.2 0.4 0.6 0.8 1
Strain Amplitude  γ

max

-0.4

-0.2

0

E
ne

rg
y

0 0.2 0.4 0.6 0.8 1
Strain Amplitude  γ 

max

-0.5

-0.4

-0.3

-0.2

E
ne

rg
y

0

0.25

0.5

0.75

1

Pr
ob

ab
ili

ty

FIG. 2. (Left) The yielding diagram that shows the steady state
energies reached after repeated cyclic deformation, as a function
of the strain amplitude γmax, for a range of initial energies. (Right)
Along with average energies over all samples (black), partial
average energies are shown, of samples that yield (red) and those
that do not (blue), revealing the discontinuous nature of the
transition to the yielded state. The yielding probability vs strain is
also shown (green).
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energy values, energies shift to lower energies, toward a
threshold value common to a range of initial energies,
before a discontinuous transition occurs, after which the
energies follow a common branch regardless of initial
energy values. For initial energies lower than the threshold,
there is no change vs γmax till a yield value is reached, at
which a discontinuous jump in energy is seen. Naturally,
the discontinuity in energy grows with the reduction of the
initial energy. From Fig. 2(a), the discontinuous nature
of the transition is not fully apparent. To reveal it more
clearly, for any choice of γmax, the final energies for the
cases where a transition occurs (and those for which it
does not) are computed, as also the probability of occur-
rence of the transition vs γmax. The typical behavior is
illustrated (for Einit

0 ¼ −0.15) in Fig. 2(b), which shows that
(i) the yielding probability rises sharply from 0 to 1 in a
very narrow range of γmax, and (ii) the energy averaged over
cases where a transition does not occur continues to
decrease with γmax even beyond the yield strain range,
whereas when a transition occurs, a nearly constant final
energy is reached. The latter observation, interestingly,
echoes simulation results [21] where continued annealing is
observed beyond the yield strain amplitude, away from the
shear band in which strain gets localized. The results here
should be interpreted suitably by noting that the present
system represents the behavior of one mesoscale block in a
more extended system. From the results here, the post-yield
energy does not continue to increase, whereas in simu-
lations, it does. This can similarly be interpreted as a result
of a larger fraction of the simulated system undergoing
yielding rather than a change in the typical energy within
that subvolume. Results in [21] clearly support such an
interpretation.
Next, the typical variation of energies vs cycle number,

averaged over samples for γmax below the yield value, are
shown in Fig. 3 for an initial energy of Einit

0 ¼ −0.15. The
timescales (measured in terms of cycles) to reach the final
state increase with γmax consistently with simulation results

[11,22], and can be fitted to a power law as shown, but the
fit parameters are not meaningful. A way of understanding
the increasing timescales is presented below, which leads to
the expectation that τ ∼ γmax expðγ4max=2σ2Þwhich provides
a very reasonable description. No long relaxation times are
observed above the transition, which I interpret to indicat-
ing that the long relaxation times observed in simulations
arise from parts of the system outside the yielded region
rather than the yield region itself, which can be tested in
simulations.
Before discussing the results further, I consider varia-

tions of the model described above. The first is the regular
model discussed above, but with a constraint on the range
of energy change when a mesostate transition occurs (with
the choice δE ¼ 0.05, σ ¼ 0.1, μ ¼ 1.1). The second is the
uniform model (σ ¼ 0.1, μ ¼ 1.1) with γ0 values uniformly
distributed, rather than discretely, for anyE0. I also consider
the regular case with σ ¼ 0.15, μ ¼ 1.1. Finally, with
μ ¼ 2, which permits transitions to mesostates of any
energy (since the threshold energy for all states is 0),
and with the additional condition that the γ0 value for the
new state is the current value of strain, one realizes a
specific instance that is the same as the SGR model [26].
The relevant yielding diagrams are reported in Fig. 4.
Investigation of these variations reveals that qualitatively,
each of them reproduces the behavior discussed above.
Equally importantly, these variations do change the thresh-
old energy as well as the energy beyond yielding, which
may be relevant in understanding material specific behav-
ior. The constrained case demonstrates that transitions to
widely different states is not a necessary feature to produce

10
0

10
1

102 103 104

Cycles

-0.5

-0.4

-0.3

E
ne

rg
y γ = 0.45

γ = 0.50
γ = 0.55
γ = 0.60
γ = 0.62
γ = 0.64
γ = 0.65
γ = 0.66
γ = 0.67

E
init

  = -0.15

0.4 0.45 0.5 0.55 0.6 0.65
γ

max

100

102

104

R
el

ax
at

io
n 

T
im

e

10
0

10
1

10
2

10
3

10
4

10
5

γ exp(γ4
/2σ2

)

10
0

10
2

10
4

FIG. 3. (Left) Average energies as a function of the number of
cycles. (Right) Relaxation time τ to reach the steady state below
yielding. The dashed line is a power law fit, and the solid line
describes τ ¼ Aγmax expðγ4max=2σ2Þ. The inset shows a log-log
plot of τ vs γmax expðγ4max=2σ2Þ.
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FIG. 4. Yielding diagram for different cases: (a) The con-
strained case with δE ¼ 0.05, σ ¼ 0.1, μ ¼ 1.1. (b) The uniform
case with σ ¼ 0.1, μ ¼ 1.1 (c) The regular case with σ ¼ 0.15,
μ ¼ 1.1 (d) The SGR version, with σ ¼ 0.1, μ ¼ 2.
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the observed behavior. The regular case with σ ¼ 0.15
illustrates that the distribution P0ðE0Þ has a strong bearing
on the threshold energy. Importantly, it also suggests that
models with trivial (e.g., flat) distributions of energies are
unlikely to capture the yielding transition under athermal
cyclic shear, which should be tested. In the present
formulation, limit cycles associated with memory effects
[25,34] do not arise. Constructing suitable transition graphs
[25,35,36] that can describe such limit cycles needs to be
explored.
The most intriguing result here and in earlier simulations

is the presence of a threshold energy, which is not an
obvious part of the model description. In contrast, the mean
energy beyond yielding has a simple explanation, as the
energy above which the mean energy to which a mesostate
transitions is lower, whereas below, it is higher. To
investigate the meaning of the threshold energy, I consider
the distribution of final energies that would be reached at
the end of a single cycle of strain for a given strain
amplitude γmax, as a function of the initial energy, for
the uniform case with μ ¼ 1.1, with initial γ0 ¼ 0. Such
two dimensional distributions PðE0; E1Þ are shown for a
series of γmax values in Fig. 5. For any γmax, there is trivially
a range of initial energies for which no transition takes
place given by E0 < −γ2max since the stability range
γ� ¼ γ0 �

ffiffiffiffiffiffiffiffiffi
−E0

p
. But for higher energies, the transition

probabilities are seen to be roughly independent of the
initial energy (though this feature is not common to all
the cases studied, behavior in other cases is qualitatively the
same). It can be seen that the probability to transition to an
energy below the threshold for the given strain (¼ −γ2max,
indicated by horizontal red lines) decreases dramatically
with an increase in γmax, and, between γmax ¼ 0.5 and 0.7, it
drops strongly (the strain at which the yielding probability
is 1=2 in this case is ≈0.563). Thus, the probability to
transition to the yielded state becomes overwhelming,
although it is never equal to 1. Correspondingly, the
probability to transition to the yielded state upon several
repeated cycles becomes a sharper function, but moves to
higher strain values.

Keeping in mind the case when μ ¼ 2 wherein an
unstable mesostate can make a transition to any other
mesostate without restriction, a simple, if approximate
estimate of the transition probability to yielding can be
made as follows. Since the stability range for a state of
energy −E0 is 2

ffiffiffiffiffiffiffiffiffi
−E0

p
, over a cycle of strain (or any unit of

strain), the transition rate out of that state is inversely
proportional to

ffiffiffiffiffiffiffiffiffi
−E0

p
, and the probability to transition to a

new state of energy E0 is P0ðE0Þ. If one assumes that as a
result of these transitions, a stationary distribution of
reached within a single cycle, the stationary distribution
is given by PstðE0Þ ∝

ffiffiffiffiffiffiffiffiffi
−E0

p
PðE0Þ. This is inaccurate for

low energies, and also does not incorporate the fact
that once an energy below −γ2max is reached, no further
transitions occur. Nevertheless, it is a good approximate
description of the distribution of energies reached after one
cycle. One can evaluate the probability, after one cycle, of
getting trapped in a minimum that is stable at γmax,
ptrapðγmaxÞ ≈

R−γ2max
−∞ PstðE0ÞdE0 ¼ Γð3

4
; γ4max=2σ2Þ=Γð34Þ∼

expð−γ4max=2σ2Þ=γmax. The relaxation time should go
inversely as ptrap, τ ∼ γmax expðγ4max=2σ2Þ, which was seen
to be good description of the simulated results [Fig. 3(b)].
Writing the probability after Ncyc cycles to yield as ptrans ¼
ð1 − ptrapÞNcyc ∼ expð−ptrapNcycÞ we see that the ptrans

will be an increasingly sharp function of γmax and the
yield strain amplitude, γYmax ∼ ½logðNcycÞ�1=4, depends very
weakly on Ncyc. Whether interactions between mesoscale
regions in a macroscopic sample could lead to a sharp
transition needs to be investigated. In [13], it was observed
that the threshold energy closely corresponds to the energy
at which the average index of saddle points goes to zero,
marking a change in the character of the energy landscape.
The implications of such a qualitative change, and how it
may be incorporated in the present description, merits
further investigation.
In summary, the yielding behavior under athermal cyclic

deformation has been investigated for a family of models
envisaged to represent a mesoscopic system, which remark-
ably captures several key observations for model glasses
that have been investigated through computer simulations
using athermal quasistatic cyclic shear (see also [37,38]).
The mechanism for the transition is a competition of the
stability against cyclic shear of low energy mesostates,
and the entropic drive associated with the large number of
higher energy minima present, reminiscent of arguments
presented in [7,9]. The transition is always discontinuous,
as also noted for uniform shear in a recent theoretical
analysis [16]. These suggest that such a description,
embedded in an elastoplastic scheme is suitable for further
investigation as an approach to modeling the larger length
scale behavior of sheared amorphous solids, such as the
emergence of permanent or multiple shear bands [39]. As
the approach is based on a local energy landscape descrip-
tion, it has advantages in capturing thermal behavior as well

FIG. 5. The histogram of energies reached after one cycle (y
axis) vs the initial energy (x axis) for a range of strain amplitudes
γmax indicated in the panels, for the uniform case with μ ¼ 1.1.
The yield γmax in this case is ≈0.563.
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as athermal behavior. It also suggests detailed investigation
of the energetic aspects of local plastic events in simu-
lations [40] in order to understand better how a diversity of
amorphous solids may be satisfactorily modeled.
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