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Inertial-range features of turbulence are investigated using data from experimental measurements of grid
turbulence and direct numerical simulations of isotropic turbulence simulated in a periodic box, both at the
Taylor-scale Reynolds number Rλ ∼ 1000. In particular, oscillations modulating the power-law scaling in
the inertial range are examined for structure functions up to sixth-order moments. The oscillations in
exponent ratios decrease with increasing sample size in simulations, although in experiments they survive
at a low value of 4 parts in 1000 even after massive averaging. The two datasets are consistent in their
intermittent character but differ in small but observable respects. Neither the scaling exponents themselves
nor all the viscous effects are consistently reproduced by existing models of intermittency.
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Turbulent fluctuations on scales intermediate between
the small scale η and the large scale L, the so-called inertial
range, are thought to conform to power laws [1–4]. In
particular, one writes

SmðrÞ≡ h½δru�mi ∼ rζm; η ≪ r ≪ L; ð1Þ

where δru ¼ ½uðrþ xÞ − uðxÞ� · r̂ is the longitudinal velo-
city increment, m is the moment order, r̂ is a unit vector
along vector r, r denotes magnitude of r, and h·i denotes a
suitable average. Although the theoretical basis for Eq. (1)
exists only for m ¼ 3 [5], it is empirically regarded as
viable for other orders as well [6]. The power-law scaling of
Eq. (1), apart from offering the allure of ubiquity [7–10],
often allows a simplification of subsequent analysis (e.g.,
see [11]).
Recently, extensively sampled data from grid turbulence

[12] have shown an interesting feature with respect to
Eq. (1) (see Fig. 1) that power law exponents may be
modulated by undulations that are only partly explained
by existing intermittency models [13]. These oscillations
become explicit when the exponent ratios ζ4=ζ2 in Eq. (1)
are examined, as the authors of [12] showed (see Fig. 1).
The oscillations decrease with Reynolds number. Here, by
examining even more extensive data from the same experi-
ment [12] at one Reynolds number, along with those from
direct numerical simulations [14–16] at a comparable
Reynolds number, we show that inertial range undulations
observed in Fig. 1 manifest in exponent ratios such as

ζ4=ζ2, in both experiments (EXP) and simulations (DNS),
but diminish in the limit of massive averaging; they seem to
disappear in simulations to yield pure power-law scaling
[Eq. (1)] but settle down to very small root-mean-square
magnitudes (rms) of the order of 4 parts in 1000 in the
experiment. The situation at higher Rλ is unknown at
present. Both EXP and DNS show that the ratios ζ4=ζ2
and ζ6=ζ2 differ from the classical Kolmogorov phenom-
enology [1] but differ in small but observable respects
between them. We comment on their possible origin.
Table I reports a few important parameters in EXP and

DNS. The Reynolds numbers (Rλ) in both EXP and DNS
are sufficiently high and comparable to each other. The
experiments were run for an unprecedented duration and
averages performed over more than 105 independent turn-
over times of the turbulence, but the averaging is performed
for only one component of the velocity and does not take
account of possible residual anisotropies; the DNS data, on
the other hand, although extensive, do not correspond to a
similarly large number of independent realizations but
perform spherical averaging over the solid angle to obtain
the isotropic sector [17,18] by the method given in [19] and
eliminate residual anisotropy effects. To measure exponents
ζm in Eq. (1) we consider the logarithmic local slopes of
velocity difference moments SmðrÞ of order m,

ζmðrÞ≡ d log SmðrÞ
d logðrÞ : ð2Þ
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If the moments SmðrÞ exhibit proper inertial range scaling
according to Eq. (1) then ζmðrÞ are constants in the inertial
range η ≪ r ≪ L. In Fig. 2 we compare the ratio of local
slopes ζ4;2 ≡ d½logS4�=d½logS2� ¼ ζ4ðrÞ=ζ2ðrÞ from EXP
and DNS. This is the first nontrivial ratio between expo-
nents of analytic functions that involve no modulus and is
less affected by strong cancellations (as can happen for odd
orders) and poor statistics (as can happen for higher-order
moments) [20,21]. The point of [12] was this ratio had an
undulating character in the inertial range, albeit of decreas-
ing magnitude with increasing Reynolds numbers.

Figure 2(a) shows that the general trend in EXP (circles)
and the isotropic DNS data (solid line) is very similar with a
conspicuous Rλ-dependent viscous dip around r=η ∼ 10
predicted by the multifractal model in both Eulerian and
Lagrangian frameworks [12,13,25,26]. With increasing
scale size a crossover “bottleneck” between the viscous
and inertial regimes around r=η ¼ 80 is seen in both EXP
and DNS. This is not predicted by any existing models.
This viscous bottleneck (which lies outside the inertial
range) decreases in amplitude with increasing Rλ, as shown
in Fig. 2(b) in the DNS (see also Fig. 1). The relation
between this physical space bottleneck and that in the
Fourier space [27,28] remains to be understood properly.
It is evident from Fig. 2(a) that inside the inertial range

η ≪ r ≪ L, which is roughly estimated to be in the range
r=η ∈ ð100; 1000Þ [16], ζ4;2 from both EXP and the
isotropic sector of DNS differ from the self-similar value
of ζ4;2 ¼ 2, indicating that higher-Rλ turbulence is indeed
intermittent with a definite departure from the K41 simi-
larity [5]. One can also see that EXP and isotropic
DNS data differ from one another and both show some
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FIG. 2. Ratio of logarithmic local slopes of S4 and S2,
ζ4;2ðrÞ≡ d½log S4ðrÞ�=d½log S2ðrÞ�, vs spatial separation r nor-
malized by Kolmogorov scale η. (a) Data from EXP at Rλ ¼ 1030
(open circles) are from [12]; the isotropic sector from DNS at
Rλ ¼ 1300 (solid line) [16] are compared with the p model
(dash-dot line) of Meneveau and Sreenivasan [22], She-Leveque
model (dashed line) [23], and that by Yakhot (dotted line) [24].
Horizontal line at ζ4;2 ¼ 2 corresponds to nonintermittent scaling
[5]. Error bars indicate the standard error obtained from temporal
fluctuations of local slopes. (b) Isotropic DNS data at different
Reynolds numbers: Rλ ¼ 240 (dotted line), 650 (dash-dot line),
and 1300 (solid line) are plotted to show that the viscous
bottleneck around r=η ¼ 80 decreases in amplitude with increas-
ing Rλ in the direction shown. (c) Data from EXP (open circles),
compared with the DNS data for the isotropic sector (solid line)
and the one-dimensional cuts in DNS along the three Cartesian
directions: r̂ ¼ ð1; 0; 0Þ (dotted line), r̂ ¼ ð0; 1; 0Þ (dashed line),
and r̂ ¼ ð0; 0; 1Þ (dash-dot line). The latter three illustrate that the
inertial range value of ζ4;2ðrÞ can be affected by nonuniversal
large-scale effects when not projecting onto the isotropic sector.

FIG. 1. Replot of data from [12] of the ratio of logarithmic local
slopes of fourth-order longitudinal velocity structure function
(S4) to the corresponding quantity for the second order (S2) vs
spatial separation r normalized by Kolmogorov scale (η); see
Eq. (2). The two thinner curves were computed from datasets
about 10 times shorter than the others, as explained in [12]. The
legend shows the microscale Reynolds numbers Rλ.

TABLE I. Parameters of the data from the experiment and
direct numerical simulation. N3 is the number of collocation
points for DNS in a periodic cube of fixed size L0. L=η is the ratio
of the integral scale L (L=L0 ≈ 0.2 for DNS) to the Kolmogorov
scale η≡ ðν3=hϵiÞ1=4, where ν is the kinematic viscosity and hϵi
the mean dissipation rate; ns is the total number of samples in
space and/or time (but the meaning of ns in EXP and DNS is
different because the ratio of the number of independent samples
to ns differ between EXP and DNS); Rλ is the Taylor microscale
Reynolds number.

N3 L=η ns Rλ

EXP …. 2567 1010 1030
DNS 81923 2514 1015 1300
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r-dependent undulations instead of the r-independent
constant [see Eq. (1)]. The finite (and small) mismatch
in ζ4;2 between EXP and the isotropic sector from DNS
could arise from the fact that the former is not projected
onto the isotropic sector. Indeed, similar one-dimensional
cuts in DNS shown in Fig. 2(c) behave differently along
different directions beyond r=η ¼ 100, with that along r̂ ¼
ð0; 0; 1Þmatching the EXP data closely in the inertial range.
Another possible reason for the mismatch might be that
EXP relies on Taylor’s frozen flow hypothesis [29] while
the DNS data do not. Finally, one cannot exclude nonuni-
versal and Reynolds number–independent effects induced
by different forcing mechanisms [30].
We compare ζ4;2 in Fig. 2(a) with three different phe-

nomenological models.While thepmodel ofMeneveau and
Sreenivasanwith the parameterp set to their value of 0.7 [22]
compares favorably with EXP, the model by Yakhot [24,31]
closely matches DNS. The She-Leveque prediction [23] lies
in between EXP and DNS, being closer to the latter than the
former. A similar comparison of ζ4;2 from EXP and DNS
with other inertial rangemodels [32–34], although not shown
here, reveals that the agreement is qualitatively similar to
those shown in Fig. 2.
We now assess in Fig. 2 the r-dependent inertial range

oscillations modulating the power-law expectations of

Eq. (1), which is the feature to which Ref. [12] drew
attention. Noting that the power-law behavior of Eq. (1) is
expected to truly hold only at sufficiently large Rλ and as
sample size n → ∞, and that real systems such as the ones
examined here are obviously at finite Reynolds numbers,
we measure the oscillation amplitudes for EXP and DNS
and plot their standard deviations as functions of their
respective sample size n in Fig. 3. EXP and DNS show
different behaviors, with EXP suggesting a saturation at a
small but finite value at even the large sample sizes con-
sidered here, while DNS exhibit a power-law decay with
the sample size, even though care must be taken because of
the short scaling range. Furthermore, the departure from a
pure power law can have different origins depending on
whether we are close to the viscous scale or to the integral
scale. For example, while viscous effects are much less
affected by statistical sampling, large-scale properties can
be less stable because of lack of statistics in DNS and some
sustained low-level forcing of a different kind in EXP. The
differences in the data might also result from differences in
the averaging procedures in the two instances or to
differences in the extent of the two datasets. We recall
that the standard deviation for random noise varies as n−1=2

with sample size.
The differences that exist between EXP and DNS in the

inertial range in Fig. 2 persist at higher orders. Figure 4
shows ζ6;2 ≡ d½log S6�=d½log S2� ¼ ζ6=ζ2 as a function of
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FIG. 3. Log-log plot of the standard deviation of the oscillation
amplitude in d½logðS4Þ�=d½logðS2Þ� from its mean value in the
range r=η ∈ ð100; 1000Þ in Fig. 2 as function of sample size n for
(a) the experiments and (b) the isotropic sector from DNS. Error
bars indicate the variation obtained by changing the interval
r=η ∈ ½100; 1000� by 10% on either side. We include an analysis
of a second EXP dataset (green squares) acquired at Rλ ¼ 961 to
illustrate typical variation in large n behavior. The standard
deviation in the experiment is approximately constant for about
two orders of magnitude for n > 108, or equivalently for more
than 105 turnover times, while that in DNS shows a −0.31� 0.04
power-law decay for n > 3 × 1012, as indicated by the solid line.
The sample size in DNS cannot be easily translated to turnover
timescales. The dashed line in (a) corresponds to the −1=2 scaling
of random noise.
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FIG. 4. Ratio of logarithmic local slopes of S6 and S2, ζ6;2ðrÞ≡
d½log S6ðrÞ�=d½log S2ðrÞ� vs spatial separation r normalized by
Kolmogorov scale η. Error bars indicate standard error obtained
from temporal fluctuations of local slopes. Data from experiment
(open circles) and the isotropic sector of DNS (solid line) are
compared with the p model (dash-dot line) of Meneveau and
Sreenivasan [22], She-Leveque model (dashed line) [23], and that
by Yakhot (dotted line) [24]. Horizontal line at ζ6;2 ¼ 3 corre-
sponds to self-similar nonintermittent scaling [5]. Inset shows a
blowup of the inertial range and to either side of it to highlight
differences between EXP and DNS.
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scale rwith a focus in the inertial range, r=η ∈ ð100; 1000Þ.
K41 similarity [5] would correspond to ζ6;2 ¼ 3. Both EXP
and isotropic DNS show roughly double the deviation from
K41 similarity at the level of ζ6;2 than that at ζ4;2 (the
increased departure being a characteristic of intermittency),
and exhibit qualitatively similar behavior including the
persistence of differences between EXP and DNS (see inset
of Fig. 4). In the case of ζ6;2 the She-Leveque model [23]
seems to agree somewhat better with EXP than the p
model, which underpredicts the level of intermittency. All
three models appear to underpredict the inertial range
intermittency of the DNS for ζ6;2.
In summary, we have examined the commonly held

belief that nonuniversal large-scale and viscous effects are
forgotten to yield universal statistics well inside the inertial
range. In particular, we compared turbulence data from
simulations and experiments at similar Reynolds numbers
and examined if power-law scaling prevails in the inertial
range and, if it does, to what extent the assumed univer-
sality [35,36] holds for structure functions. We confirmed
that the scaling exponent ratios depart considerably from
the K41 prediction [1,2] and that existing phenomenologi-
cal models do not account for all the observed small-scale
nonuniversalities. We found that viscous effects in the
exponent ratios persist up to at least r=η ∼ 80 (although this
precise number may vary with the context). For larger scale
separations and up to r=η ∼ 1000 scaling properties are
close to a pure power law with superposed small oscil-
lations whose amplitudes decrease with increasing scale
and Reynolds number; they decay continually with sample
size in DNS but have a sustained presence of about 4 parts
in 1000 even for very large sample sizes in EXP. A small
but detectable mismatch between DNS and EXP data is
further measured at all scales. Both these effects may be
due to Reynolds number–independent breaking of univer-
sality, which would call to question the past 80 years of
turbulence theory, or to some subtle and long-lived large-
scale effects, or something else. These important findings,
although subtle, have been possible because of the unprec-
edented combination of high sample sizes and high
Reynolds numbers in both DNS and EXP. We are entering
an era in which scaling laws in turbulent flows can be
assessed to within a few percent accuracy and over two or
more decades of scale-by-scale comparisons.
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