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Chiral optical effects are generally quantified along some specific incident directions of exciting waves
(especially for extrinsic chiralities of achiral structures) or defined as direction-independent properties by
averaging the responses among all structure orientations. Though of great significance for various
applications, chirality extremization (maximized or minimized) with respect to incident directions or
structure orientations has not been explored, especially in a systematic manner. In this study we examine
the chiral responses of open photonic structures from perspectives of quasinormal modes and polarization
singularities of their far-field radiations. The nontrivial topology of the momentum sphere secures the
existence of generic singularity directions along which mode radiations are either circularly or linearly
polarized. When plane waves are incident along those directions, the reciprocity ensures ideal
maximization and minimization of optical chiralities, for corresponding mode radiations of circular
and linear polarizations, respectively. For directions of general elliptical polarizations, we have unveiled the
subtle equality of a Stokes parameter and the circular dichroism, showing that an intrinsically
(geometrically) chiral structure can unexpectedly exhibit no optical chirality at all or even optical
chiralities of opposite handedness for different incident directions. The framework we establish can be
applied to not only finite scattering bodies but also infinite structures, encompassing both intrinsic and
extrinsic optical chiralities. We have effectively merged two vibrant disciplines of chiral and singular
optics, which can potentially trigger more optical chirality-singularity related interdisciplinary studies.
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Optical responses of photonic structures are generally
anisotropic, depending on both polarizations and incident
directions of the exciting waves. Chiralities emerge when
optical responses are distinct for circularly polarized waves
of opposite handedness while having the same incident
direction [1,2]. Chiral effects can be observed for both
intrinsically chiral and achiral structures [3–8]. For chiral
structures, (intrinsic) chiralities are generally present and
can be quantified as direction-independent properties
through orientation-averaging chiral effects [1,2,9–12];
while for achiral structures, (extrinsic) chiralities only
emerge for symmetry-breaking incident directions [13–17],
which nevertheless would be absent for symmetry-preserv-
ing directions or when orientation averaged. For both
scenarios, chiral responses are generally dependent on
structure orientations, and thus it is fundamental to ask,
given an optical structure, how its chiral response can be
ideally extremized with respect to incident directions?
Besides chiral optics, another photonic branch of sin-

gular optics has also gained enormous momentum from
two decades of explosive developments of nanophotonics,
fertilizing many related disciplines [18–21]. Vectorial

optical singularities correspond to states of circular and
linear polarizations, for which semimajor axes and orien-
tation planes of polarization ellipses are undefined, respec-
tively [22–24]. Polarization singularities are skeletons of
general electromagnetic waves, which are robust against
perturbations and generically manifest in both natural and
artificial fields [18–21]. Despite the ubiquity of polarization
singularities, it is rather unfortunate and surprising that for
decades both disciplines of chiral and singular optics
developed almost independently with rare crucial inter-
actions, especially when fundamental entities of circular
polarizations are shared by both fields.
Here we investigate chirality extremization, for

both achiral and chiral structures, with plane waves of
varying incident directions. Chiral effects are examined
from perspectives of quasinormal modes (QNMs) and
radiation polarization singularities. The nontrivial topo-
logy of momentum sphere has secured existences of
singularity directions, as protected by the Poincaré-Hopf
theorem [25–28]. For a structure supporting a dominant
QNM with waves incident along singularity directions of
circular and linear mode radiations, chiral effects are ideally
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maximized and minimized, respectively. For directions of
general elliptical polarizations, the equality of a Stokes
parameter and circular dichroism is discovered, demon-
strating that an intrinsically chiral structure can unexpect-
edly manifest no chirality or even chiralities of opposite
handedness for different orientations. The chirality extrem-
ization is generically protected by reciprocity and thus
broadly applicable to both extrinsic and intrinsic chiral
responses.
Without loss of generality, we study reciprocal non-

magnetic structures of relative permittivity ϵðr;ωÞ in
vacuum background of refractive index n ¼ 1. An open
structure supports a set of QNMs characterized by eigen-
field ẼjðrÞ and complex eigenfrequency ω̃j [29]. The
incident plane wave is EincðrÞ, with wave vector kinc, real
frequency ω, and wavelength λ. Excited fields can be
expanded into QNMs as E ¼ P

αjðωÞẼjðrÞ, with excita-
tion coefficients [29]:

αjðωÞ ∝
Z Z Z

V
−iω½εðr;ωÞ − 1�EincðrÞ · ẼjðrÞd3r; ð1Þ

where V denotes regions the structure occupies. When only
one nondegenerate QNM is dominantly excited, as is the
case throughout this study, the mode subscript j can be
dropped. It is well known that far-field radiations of QNMs
and thus the corresponding scattered fields are divergent.
Several approaches exist that can overcome this difficulty
[29], and a direct technique is to treat J̃ðrÞ ¼ −iω½εðr;ωÞ −
1�ẼðrÞ as source currents according to the volume equiv-
alence theorem (Chap. 7 of Ref. [30]). They can then
be expanded into electromagnetic multipoles (spherical
harmonics) at real ω, based on which convergent radiated
(or scattered) far fields ẼradðrÞ can be directly calcu-
lated [31,32].
This current-radiation perspective can simplify Eq. (1) as

αðωÞ ∝
Z Z Z

V
EincðrÞ · J̃ðrÞd3r: ð2Þ

Let us assume that Einc comes from a point-dipole moment
P (P locates on the transverse plane P · kinc ¼ 0 and is in
phase with Einc: P ∝ Einc) in the far zone. According to
Lorentz reciprocity [33,34]:

Z Z Z

V
EincðrÞ · J̃ðrÞd3r ¼ Ẽrad · _P ¼ −iωẼrad · P; ð3Þ

where time-derivative _P denotes the dipolar current
and Erad is the radiated field along krad ¼ −kinc.
Since Einc ∝ P, Eq. (3) can be converted to
∭VEincðrÞ · J̃ðrÞd3r ¼ −iωẼrad · P ∝ Ẽrad · Einc, which
simplifies Eq. (2) to

αðωÞ ∝ Ẽrad ·Einc; kinc ¼ −krad: ð4Þ

It means that QNM excitation efficiency for incident
plane waves can be calculated directly, through the dot
product of radiated and incident fields. Alternative
derivations for Eq. (4), without referring to source currents
of either radiated or incident fields, are presented in the
Supplemental Material [35].
The validity of Eq. (4) can be checked against the

simplest example of a metal bar supporting solely an
electric dipole. Electric fields radiated are shown in
Fig. 1(a): the dipole is vertically oriented and the fields
are parallel to the lines of longitude [28,38]. Along the
dipole, there are no radiations Ẽrad ¼ 0 and thus α ¼ 0
according to Eq. (4). It means plane waves incident parallel
to the bar will not excite it, which agrees with our
conventional method of projecting the incident electric
field onto the bar axis. Similar analysis can be conducted
along other directions, where one linear polarization
(parallel to the radiated field) excites the dipole while
the other orthogonal polarization does not. The superiority
of Eq. (4) to Eq. (1) is not obvious for this example but
would become apparent for more sophisticated bodies.
Radiations can be always expanded into right- and left-

handed circularly polarized (RCP and LCP, denoted
respectively by ↻ and ↺) components along krad:
Ẽrad ¼ μẼ↻

rad þ νẼ↺
rad. Here μ and ν are generally complex
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FIG. 1. (a) A metal bar supports an electric dipole mode and its
radiated electric fields on the momentum sphere. (b) A gold SRR
with the spherical coordinate system (r, θ, ϕ), and (c) S3
distribution for the QNM supported. Two singularity directions
are marked: kc

radðθ ¼ 67.3°;ϕ ¼ 175.1°Þ (⋆) and kl
radðθ ¼ 0Þ

(×). (d) and (e) CD and absorption spectra for RCP and LCP
incident waves, for kinc ¼ −kc

rad;−kl
rad, respectively [directions

also marked in (f)]. (f) Angular CD spectra for waves incident
antiparallel to directions on a great momentum circle marked in
(c) by a dashed arc.
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numbers (jμ2j þ jν2j ¼ 1), the ratio between which decides
properties of the polarization ellipse of Ẽrad [36]. For
incident RCP and LCP waves along kinc ¼ −krad, accord-
ing to Eq. (4) excitation coefficients are, respectively,

α↻ ∝ μ; α↺ ∝ ν: ð5Þ

When only one QNM is dominantly excited, all cross
sections of extinction, scattering, and absorption
are proportional to excitation efficiency jαj2 [35]:
C↻;↺
ext;sca;abs ∝ jα↻;↺j2. The circular dichroism (CD) is

defined (similar to the Kuhn’s dissymmetry factor [1]) as

CD ¼ ðC↻
abs − C↺

absÞ=ðC↻
abs þ C↺

absÞ; ð6Þ

which can then be simplified through Eq. (5) as

CD ¼ jμ2j − jν2j ¼ S3; krad ¼ −kinc: ð7Þ

Here, S3 is nothing but exactly one of the Stokes parameters
widely employed for polarization characterizations [36]:
S3 ¼ �1 corresponds, respectively, to RCP and LCP
waves; S3 ¼ 0 corresponds to linear polarizations and other
values of S3 to elliptical polarizations (the difference from
previous studies is that here S3 is angular dependent).
Equation (7) reveals the subtle connection between S3 of
radiations and CD when only one QNM is dominantly
excited: jCDj can be maximized and minimized antiparallel
to the C-direction (S3 ¼ �1) and L-direction (S3 ¼ 0) to
ideal values of jCDj ¼ 1 and CD ¼ 0, respectively. We
emphasize that those chirality extremization directions are
exactly where generic polarization singularities are present
[22–24]. The nontrivial topology of the momentum sphere
secures the existence of those singularity directions [25–
28], which guarantees broad applicability of our model.
We can generalize definitions of CD to CDext;sca ¼

ðC↻
ext;sca − C↺

ext;scaÞ=ðC↻
ext;sca þ C↺

ext;scaÞ, and identical to
Eq. (7) we have CDext;sca ¼ S3 [35]. Based on this relation
we can deduce polarization properties of mode radiations
from general scattering properties of the scatterer.
For example, it has been proved that for oppositely
incident waves on a reciprocal scatterer [39,40]:
CDextðkincÞ ¼ CDextð−kincÞ, which immediately implies
S3ðkradÞ ¼ S3ð−kradÞ and thus Eq. (7) is actually valid
for both directions of kinc ¼ �krad. It is further proved [40]
that for inversion-symmetric scatterers, CDext ¼ 0 for
arbitrary incident directions, which requires that QNM is
everywhere linearly polarized (S3 ¼ 0) throughout the
momentum sphere [35]. It is clear from Eq. (7) that CD
(including its generalized versions of CDext;sca) is solely
decided by polarizations while it has nothing to do with
intensities of radiations. As a result, an alternative approach
for expansions of the source currents J̃ðrÞ into multipoles
of complex frequencies does not affect our results [41].

To confirm our theory, we begin with the widely
employed split ring resonator (SRR) that exhibits two
symmetry mirrors (x-y and y-z planes) and is thus achiral
[Fig. 1(b)]. The SRR is made of gold with permittivity
listed in Ref. [42]. Neighboring ω1 ¼ 7.4875 × 1014 rad=s
(λ1 ¼ 2.516 μm), an individual QNM is excited with
eigenfrequency ω̃1¼ð7.4875×1014−2.0414×1013iÞrad=s
(numerical results are obtained using COMSOL
Multiphysics in this study). The S3 distribution for this
mode is presented in Fig. 1(c), where polarization singu-
larities with S3 ¼ �1 or 0 are generically manifest along
various directions [18–21]. Two singularity directions are
marked (one C-direction of kc

rad and one L-direction of
kl
radkz) and circularly polarized plane waves are incident

antiparallel to those directions. The corresponding spectra
of absorption and CD are demonstrated, respectively, in
Figs. 1(d) and 1(e), showing clearly that jCDj is maximized
and minimized, respectively. The deviation of CD from its
ideal absolute values of 1 and 0 at some spectral positions is
induced by some marginal contributions of other QNMs
excited, as is also the case in following studies of other
structures. We emphasize that zero CD in Fig. 1(e) is
observed along kl

rad that preserves the mirror symmetry of
the whole scattering configuration (parity conservation
requires zero CD [1,40]). This is consistent with the
conception that extrinsic chiralities are present along
symmetry-breaking directions [14–17].
To verify the validity of Eq. (7) for general nonsingu-

larity directions 0 < jS3j < 1, a great circle on the momen-
tum sphere (parametrized by 0 ≤ β ≤ 2π) that contains the
marked C-direction and L-direction is selected [also
marked in Fig. 1(c)]. The angular CD spectra (ω ¼ ω1)
along directions antiparallel to points on this circle are
shown in Fig. 1(f), where two sets of results are presented:
one calculated from S3 [Eq. (7)] and the other through
Cabs obtained in direct scattering simulations [Eq. (6)].
Both sets of results agree well, the symmetry of which
[CDðβÞ ≈ CDðβ � πÞ] reconfirms our previous claims of
CDðkincÞ ¼ CDð−kincÞ and S3ðkradÞ ¼ S3ð−kradÞ for sin-
gle mode excitations.
Now that achiral structures do exhibit chiral responses

along some incident directions, why should they be
classified as achiral? The conventional standard is purely
geometric: they exhibit mirror or inversion symmetries and
thus can be superimposed onto their mirror images [1].
Alternatively, CD can be employed to categorize structures
as chiral or not, but only when it is orientation averaged
among all incident directions:

CD ¼ 1

4πjkincj2
ZZ

CDd2kinc: ð8Þ

The law of parity conservation [1,40] ensures that the
mirror-symmetry or inversion-symmetry operation maps
C↻;↺
abs to C↺;↻

abs , flipping the sign of CD according to Eq. (6).
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As a result, CD ¼ 0 for mirror-symmetric or inversion-
symmetric structures, which agrees with the geometric
standard of image superimposition.
Now we turn to a SRR dimer that is intrinsically chiral

[Fig. 2(a)], which supports a QNM at eigenfrequency
ω̃2 ¼ ð7.0765 × 1014 − 1.6125 × 1013iÞ rad=s. The S3 dis-
tribution of this QNM is presented in Fig. 2(b), where one
C-direction and one L-direction are marked. The corre-
sponding spectra of absorption and CD are demonstrated
respectively, in Figs. 2(c) and 2(d) for plane waves incident
antiparallel to those directions. We have also selected
a great momentum circle [as marked in Fig. 2(b), contain-
ing C-direction, L-direction and the z-axis] and the
corresponding angular CD spectra [ω ¼ Reðω̃2Þ and
λ ¼ 2.662 μm, where Re denotes the real part] along
directions antiparallel to points on this circle are shown
in Fig. 2(e). It is worth noting that along the dimer twisting
direction (z axis with β ¼ 0 and π), CD is actually quite
small (CD ¼ S3 ¼ 0.12) and far from being maximal.
For chiral structures consisting of twisted elements that

are similar to that shown in Fig. 2(a), though not stated
explicitly, it is widely believed that the incident direction
of maximal jCDj should be parallel to the twisting axis
[2–4,6,7,43–49]. In fact, this is not the case and CD along
other directions can be much more significant as shown in
Fig. 2(e). A structure being achiral or chiral can be defined
optically through whether or not CD ¼ 0, and the sign of
CD rather than that of CD is connected to such a defined
handedness. Meanwhile, we have to emphasize that even
the sign of CD can be opposite at different spectral potions
due to dispersions [1], telling that there is basically no

definitive correspondence between geometric handedness
and the chiral responses. For achiral structures, CD ¼ 0
does not require CD ¼ 0 everywhere, and extrinsic chir-
alities emerge along directions of CD ≠ 0 [13–17]. In a
similar fashion, for chiral structures, CD ≠ 0 requires
neither CD ≠ 0 nor CD and CD being of the same sign
everywhere. This means that an intrinsically chiral structure
can manifest no chirality at all (CD ¼ 0) or even chiralities
of opposite handedness (CD of different signs) among
different incident directions [Fig. 2(e)].
Up to now, we have discussed how to extremize CD to its

ideal absolute maximum or minimum values with respect to
incident directions. Since jCDj is automatically minimized
(CD ¼ 0) for achiral structures, it is both interesting and
significant to ask how to maximize jCDj ideally to
CD ¼ �1. According to Eq. (8), the ideal maximization
of jCDj requires CD ¼ �1 along all incident directions [or
more accurately some isolated directions can be exempted,
as they do not affect the overall integration in Eq. (8)]. This
requires that mode radiations are circularly polarized with
the same handedness throughout the momentum sphere
except for some isolated directions. This is possible, for
example, for a pair of parallel electric and magnetic dipoles
(or higher-order multipoles of the same order) of the same
magnitude (in terms of total radiated power) and �π=2
phase contrast, as secured by the electromagnetic duality
symmetry (along the isolated directions parallel to the
dipole orientation direction there are no radiations and thus
the polarizations are not defined) [38]. Our conclusions for
jCDjmaximization are consistent with the results presented
in Ref. [50], where the problem has been approached from
a very different perspective. However, up to now, most if
not all realistic reciprocal structures are anisotropic in terms
of CD responses and thus ideal CD ¼ �1 has not been
obtained so far, though it is not theoretically impossible.
As a final step, we proceed to apply our framework to

infinitely extended photonic crystal slabs (PCSs), which
support Bloch QNMs [21,51,52]. It is well known that
through symmetry breaking, some bound states in the
continuum [52] can be broken into circularly polarized
radiating states [21,27,53–57]. One such square-latticed
(periodicity p ¼ 380 nm) PCS of index n ¼ 2.02 is inset in
Fig. 3(a), which is achiral (symmetric with respect to the
x-y and y-z planes) while the symmetry respect to the x-z
plane is broken. The dispersion curve [Reðω̃Þ versus
kx
rad, with ky

rad ¼ 0] that is colored according to the S3
distribution of QNM radiations for one nondegene-
rate TE-like (electric fields distributed on the x-y plane)
band are shown in Fig. 3(a). One C direction is marked (⋆)
with ω̃3 ¼ ð3.8409 × 1015 − 1.8686 × 1013iÞ rad=s and
kc
rad¼ðkc;x

rad;k
c;y
rad;k

c;z
radÞ, with kc;x

radp=2π¼0.1332, kc;y
rad ¼ 0,

kc;z
rad ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Reðω̃3Þ=c�2 − ðkc;x

radÞ2 − ðkc;y
radÞ2

p
and c is the

speed of light. Now we shine circularly polarized plane
waves onto the PCS with fixed frequency ω ¼ Reðω̃3Þ
along different directions (variant kx

inc) on the x-z plane
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FIG. 2. (a) An intrinsically chiral SRR dimer and (b) S3
distribution for the QNM supported. Two singularity directions
are marked: kc

radðθ ¼ 63.4°;ϕ ¼ 7.3°Þ (⋆) and kl
radðθ ¼

88.1°;ϕ ¼ 7.3°Þ (×). (c) and (d) CD and absorption spectra
for circularly polarized incident waves, for kinc ¼ −kc

rad;−kl
rad,

respectively [directions also marked in (e)]. (e) Angular CD
spectra for waves incident antiparallel to directions on a great
momentum circle marked in (b) by a dashed arc.
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(ky
inc ¼ 0), with kinc ¼ ðkx

inc;k
y
inc;k

z
incÞ. Angular reflection

(R) spectra are presented in Fig. 3(b), where the critical
direction kinc ¼ kc

rad is marked.
Figure 3(b) shows clearly that along C direction RCP

and LCP waves are almost fully transmitted and reflected
(no higher-order diffractions), respectively. Near-field dis-
tributions (Ey on the x-z plane; dashed rectangles denote
the cross sections of the PCS) are presented in Figs. 3(c)
and 3(d), where the formation of a standing wave upon
reflection in Fig. 3(d) obscures the information of oblique
incidence. Those properties agree with our result in Eq. (4),
which requires that circularly polarized Bloch QNM is
maximally and not excited by LCP and RCP waves, leading
to perfect reflection and transmission, respectively. When
material losses are incorporated (n ¼ 2.02þ 0.001i), both
spectra of reflection (R) and absorption (A) efficiency are
summarized in Fig. 3(e). Along the marked critical direc-
tion, as expected, there is considerable and almost no
absorption for incident LCP and RCP waves, respectively,
which is also consistent with our previous analyses.
To conclude, we revisit optical chiralities from perspec-

tives of polarization singularities. When waves are incident
parallel to the C and L directions, the chiral responses are
ideally extremized. For general incident directions, we
discover the subtle equivalence of CD and S3, showing
that an intrinsically chiral structure can surprisingly mani-
fest no chirality at all or even chiralities of opposite
handedness among different directions. The validity of
our conclusions resides on the approximation of single
QNM excitation, which is indeed applicable to many
structures, especially to those that do not exhibit any
geometric symmetries (e.g., rotational symmetries that
protect at least one pair of degenerate QNMs [49]).
When several QNMs (including degenerate ones) are

co-excited, observable optical properties are neither propor-
tional to the excitation efficiency of any QNM nor their
direct sum, since QNMs are generally not orthogonal
and inter-mode interference terms have to be carefully
examined [29,31,58]. Besides QNM-based approaches
[29,31,59], techniques such as the scattering matrix method
[60] can be also employed to tackle more general scenarios,
from which to extract simple and general principles
constitutes a promising research direction. Our results
are directly applicable to elliptical dichroism [35], and
singularity based approaches we introduce can be poten-
tially extended to structured non-plane beams [61,62].
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