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We experimentally demonstrate the steady-state generation of propagatingWigner-negative states from a
continuously driven superconducting qubit. We reconstruct the Wigner function of the radiation emitted
into propagating modes defined by their temporal envelopes, using digital filtering. For an optimized
temporal filter, we observe a large Wigner logarithmic negativity, in excess of 0.08, in agreement with
theory. The fidelity between the theoretical predictions and the states generated experimentally is up to
99%, reaching state-of-the-art realizations in the microwave frequency domain. Our results provide a new
way to generate and control nonclassical states, and may enable promising applications such as quantum
networks and quantum computation based on waveguide quantum electrodynamics.
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In the continuous-variable (CV) approach to quantum
information processing [1,2], information can be repre-
sented by a phase space quasiprobability distribution such
as the Wigner function [3]. To obtain a quantum computa-
tional advantage with a CV quantum circuit, either the input
state, the circuit itself, or the final measurement needs to be
characterized by a negative quasiprobability distribution
[4]. For example, Gaussian boson sampling [5,6] utilizes
Wigner-positive input states and a linear circuit, but has
photon-number resolving detectors which are associated
with Wigner-function negativity [7]. In this work, we focus
on generating Wigner-negative states that could be used as
a computational resource in a linear circuit with heterodyne
or homodyne measurements.
Nonclassical states with negative Wigner functions have

been implemented using natural atoms [8,9], trapped ions
[10,11], and optical photons [12]. In superconducting
quantum circuits, some Wigner-negative states have been
implemented in 3D cavities [13–15] and resonators [16–18]
where the states are stored in the confined modes of the
cavities. Such states have a limited lifetime and the
corresponding setups are relatively complicated. In wave-
guide quantum electrodynamics by using superconducting
circuits, single photons as well as cat states have been
generated and transferred [19–21]. These propagating
states are generated by either releasing a cavity state or
by exciting a quantum emitter that subsequently decays
into a waveguide. However, in both cases, the states result
from transient dynamics so that resetting the system after a

certain time is necessary. A continuously driven source may
lead to higher generation rates, but the question whether
Wigner-negative states can be generated this way has been
theoretically addressed only recently [22,23], and exper-
imental verification was still lacking. In Ref. [24] a qubit in
an infinite waveguide was used to demonstrate photon
antibunching or nonclassical correlations between photons
emitted by the qubit. While that is a nonclassical phe-
nomenon, the Wigner function of any propagating mode
would be positive since the emitted field is in a mixed
state [22].
In this work, we experimentally demonstrate the gen-

eration of Wigner-negative states using the steady-state
emission from a continuously driven superconducting
qubit. We study the nonclassical properties of the quantum
state of light propagating along a semi-infinite waveguide,
occupying the single mode defined by a temporal filter. We
reconstruct the Wigner function of the state, and investigate
the effect of different temporal mode filters. Our flux-
tunable transmon qubit [25] is capacitively coupled to the
open end of a one-dimensional transmission line [Figs. 1(a)
and 1(b)]. The circuit is equivalent to an atom in front of a
mirror in 1D space with a negligible distance between the
qubit and the mirror. In this work, the qubit is operated at
zero external flux.
The total scattered field from the qubit in front of a

mirror is characterized by its annihilation operator aout
which contains two contributions: the incoming field
operator ain reflected by the mirror and the field emitted
by the qubit, according to [36,37]

aoutðtÞ ¼ ainðtÞ − i
ffiffiffiffiffiffiffiffiffiffiffi
Γreiϕ

q
σ−ðtÞ; ð1Þ

where ainðtÞ ¼ ΩðtÞ=ð2
ffiffiffiffiffiffiffiffiffiffiffi
Γreiϕ

p
Þ, Γr is the decay rate of the

qubit into the transmission line, ΩðtÞ is the Rabi frequency
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of the coherent input, the phase ϕ quantifies the impedance
mismatch in the line (for a perfectly matched line, ϕ ¼ 0;
see the Supplemental Material [26]), and σ−ðtÞ is the qubit
lowering operator.
To characterize the device, we apply a coherent con-

tinuous probe to the input port in Fig. 1(a). An input signal
ainðtÞ reaches the qubit. The scattered field aoutðtÞ is
measured at the output port. In the steady state, the
expectation value of haoutðtÞi is constant. By taking
averages, we obtain the complex reflection coefficient as
r ¼ haouti=haini [Fig. 1(b), black dots]. By fitting
data to the theory [Fig. 1(b), black line], we
obtain ϕ ¼ −0.319� 0.03, Γr=2π ¼ 1.11 MHz and
Γ2=2π ¼ 0.528 MHz, where Γ2 is the total decoherence
rate of the qubit. After compensating for the impedance
mismatch, a parametric plot of the reflection coefficient
describes a circle in the IQ plane [Fig. 1(c)]. The radius of
the circle approaches unity, which implies than nonradia-
tive decay and pure dephasing are negligible in our sample.
For a coherently driven two-level system in our mirror-

like geometry, the largest Wigner negativity is expected
when driving on resonance and choosing the drive power so
that the coherent reflection vanishes [23]. This effect,

reported in previous experiments [38], is due to destructive
interference between the radiation reflected by the mirror
and the radiation coherently scattered by the two-level
system. Here, we also find that at this drive power the
coherence between the qubit’s ground and excited states is
maximized [26]. We call this power the critical power. In
our case, due to the impedance mismatch, full cancellation
is achieved at a slightly detuned driving frequency [by
170 kHz, blue circle in Fig. 1(b)]. By contrast, resonant
driving of the system at the same power gives some residual
coherent reflection [red circle in Fig. 1(b), caused by the
impedance mismatch], which we eliminate in the measure-
ments below by applying a cancellation pulse to the
cancellation port of the directional coupler [Fig. 1(a)].
As we show in the following, both on- and off-resonant
cases give comparable results with regards to the observed
Wigner negativity.
The emission from the qubit is not confined and

comprises a continuum of modes described by the operator
aoutðtÞ. Here we study the quantum state occupying the
single mode a defined by the filter function fðtÞ.
Consequently, the properties of the state will depend on
the chosen fðtÞ. We perform a full tomography of propa-
gating modes, by measuring their statistical moments
ha†mani; m; n ¼ 0;…; Nc, where a ¼ R

∞
0 dtfðtÞaoutðtÞ

[39] and Nc is the photon-number cutoff. In order to excite
the qubit, we send a long pulse 4.4 μs, much longer than the
lifetime of the qubit, T1 ¼ 1=Γ1 ¼ 145 ns. This in order to
ensure that the qubit has reached the steady-state before we
perform the measurement of its emission field [26].
First, we consider a normalized rectangular boxcar filter
which is a constant function within the time interval from
t0 ¼ 2.5 μs to t0 þ τ=Γ2 and zero elsewhere. In Fig. 2 we
show the magnitude of the moments up to 6th order

(a)

(b) (c)

100 um

FIG. 1. Measurement setup and spectroscopy of a transmon
qubit. (a) A simplified schematic of the measurement setup.
Dir.Coupler denotes a directional coupler with coupling factor
A ¼ 0.1. ainðtÞ and aoutðtÞ are the input and output signals. A
superconducting circuit is connected to the directional coupler,
where a transmon consisting of a superconducting island (red)
shunted by a Superconducting QUantum Interference Device
(SQUID) loop is capacitively coupled to a coplanar waveguide
(blue) and inductively coupled to a flux line (green). The inset
shows a close-up of the SQUID loop. (b) Single-tone spectros-
copy, showing real and imaginary parts of the reflection coef-
ficient r of a probe with the qubit at zero external flux. The black
and orange dots are the experimental data of the reflection
coefficient at two different intensities of the probe, namely,
Ω ≪ Γr and Ω ≈ 0.707Γr, respectively. The solid curves show
the corresponding fittings to theory. (c) Here, the data in (c) has
been corrected for the impedance mismatch in the probe line [26].

FIG. 2. Moments for the on-resonance case. Different orders of
moments for the propagating state from the qubit emission with
the measurement time window τ ¼ 2.0, where τ defines the
length of the boxcar filter in the time domain. The red rectangles
correspond to experimental data, which include the impedance
mismatch in the line. The blue rectangles correspond to a
numerical simulation of the ideal line, without the impedance
mismatch.
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(mþ n ≤ 6) for τ ¼ 2 for the on-resonant case in red
rectangles. Because of the small average photon number
ha†ai, it is enough to truncate the Fock space up to Nc ¼ 4.
Our results are very similar to the numerical simulations
[40], using the method presented in Ref. [41] which
correspond to the blue rectangles. The slight difference
is due to the impedance mismatch which gives a higher
Rabi frequency Ωm ¼ ð0.74� 0.01ÞΓ1 [26] than the ideal
case Ωm ¼ 0.707Γ1, leading to a slightly larger photon
number ha†ai. Finally, as expected, the first order moment
hai is almost zero due to the additional pulse that corrects
the effect from the impedance mismatch.
To demonstrate the nonclassical character of the gen-

erated states we now turn to their Wigner functions. We first
extract the density matrix ρ of the filtered output from the
measured moments using maximum likelihood estimation
[42]. Then, we obtain the Wigner function from the relation
WðαÞ ¼ ð2=πÞTr½D̂ðαÞρD̂†ðαÞΠ̂�, where D̂ðαÞ is the dis-
placement operator with amplitude α and Π̂ is the parity
operator [39]. In Fig. 3(a), the nonclassical nature of the
outgoing field is corroborated by the negative values of
the Wigner functions for different values of τ. As seen in
the plots, with increasing τ from 0.5 to 2.0, the negativity
region becomes larger. For τ > 2.0, the corresponding
negativity is decreased, as will be discussed below.
To quantify the nonclassical content of the state,

we use the Wigner logarithmic negativity [43] defined
as WLN ¼ log ðR dαjWðαÞjÞ, which has the property
WLN > 0 when the Wigner function WðαÞ has a negative
part.
We calculate the WLN for both on- and off-resonant

cases for the boxcar filter (red and blue markers, respec-
tively) in Fig. 4(a). We see that the WLN increases when τ
is increased from 0 to 2.1, whereas it starts to decrease
when τ is increased further. Our experimental results

(markers in Fig. 4) are in excellent agreement with
numerical simulations (solid lines) [44]. Since the chosen
filter function defines the observed mode it is reasonable to
expect that a different choice of filter function will also
affect the observed negativity of the Wigner function
[Figs. 3(a) and 3(b)]. In Fig. 4(b), we show the values
of WLN for a measurement with a normalized Gaussian
filter fðtÞ ¼ ffiffiffiffiffi

Γ2

p
expð−t2Γ2

2=4ξ
2Þ=ð2πξ2Þ1=4. Compared to

the boxcar filter, the Gaussian filter with a width given by
ξ ¼ 0.5 can produce a state with a maximumWLN twice as
large, which is also seen by comparing Fig. 3(b) and
Fig. 3(a). Through numerical optimization we have verified
that the Gaussian filter is indeed the optimal filter for
maximizing the Wigner negativity, the same method is also
used in Ref. [45].
From Eq. (1), the effect of the driving field on the total

output is to displace the emission from the qubit. A
displacement operation in phase space amounts to a
translation of the Wigner function which does not affect
its negativity. Therefore, in order to obtain the field emitted
by the qubit, we can remove the coherent signal from the
drive by means of a digital displacement with the opposite
sign on the extracted density matrix of the total emission.
Since we know the Rabi frequencyΩm at the critical power,
we can obtain the displacement as ðΩm=2

ffiffiffiffiffiffiffiffiffiffiffiffi
Γr=Γ2

p Þ ffiffiffi
τ

p
.

Therefore, we can obtain the photon number from the qubit
emission in Fig. 4(c). This figure reveals the relation
between the WLN and the single-photon population. For
filtering times much smaller than the qubit decay time
(τ ≪ 1), the field is approximately in the vacuum state, i.e.,
a Gaussian state and consequently, a Wigner positive state.
As we increase τ, the single-photon population becomes
non-negligible. In fact, for 0 ≤ τ ≤ 1, the state is mostly a
superposition of the vacuum and single-photon states. As
shown in Refs. [22,23], in this two-dimensional space, the

(a) (b)Boxcar Gaussian

FIG. 3. Reconstructed Wigner function with boxcar and Gaussian filters. Comparison between the numerical simulation and the
experiment for Wigner functions of the propagating states. Wigner functions for (a) the on-resonance case using a boxcar filter of length
τ=Γ2. (b) The off-resonance case using a Gaussian filter of standard deviation ξ=Γ2. The negative values indicate that the states are
nonclassical. The color scale has been adjusted to the measured data range for optimal visibility. The rotation between (a) and (b) is due
to the phase of the driving field.
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relation between Wigner negativity and single-photon
content strongly depends on the purity. In simple terms,
for a statistical mixture of vacuum and a single photon, we
require an average population of at least half a photon in
order for the state to be Wigner negative. This required
population decreases with an increasing purity. By com-
paring Figs. 4(a) and 4(c), we see that the WLN becomes
nonzero roughly when the vacuum and the single-photon
populations become identical at τ ≃ 1.
For τ ≥ 1, two- and three-photon states in Fig. 4(c) are no

longer negligible. Nevertheless, the single-photon popula-
tion becomes the dominant contribution to the state. In fact,
the WLN achieves its largest value when the single-photon
state achieves its largest population (ρ11 ≈ 2ρ00 and
ρ11 ≈ 4ρ22) at τ ≃ 2.
Increasing τ further beyond the qubit decay time, the

output field will contain more uncorrelated emissions. As it
can be seen in Fig. 4(d), the net effect of this is to reduce the
purity of the output state and consequently the Wigner
negativity.
Because of the impedance mismatch, the Rabi frequency

for the on-resonant case is slightly higher than the off-
resonant case, resulting in a lower purity compared to the
off-resonant case [Fig. 4(d)]. Accordingly, the correspond-
ing WLN is smaller [Fig. 4(a)].
The single photon population and the purity of the state

are higher for a Gaussian than for a boxcar filter, leading to
a higher negativity [Figs. 4(a), 4(b) and Ref. [26] ]. With a

larger filter width, the photon population is increased, this
will lead to a non-negligible contribution from higher order
moments. The measurement of these is limited by the
system noise. Nevertheless, lower order moments still yield
the dominant contribution to the field state. Therefore, the
observed tendency of theWLN for ξ > 0.5 in Fig. 4(b) is in
agreement with the numerical simulations.
Our nonclassical states have above 95% fidelities

between the experimentally produced states and the pre-
dicted states for both types of filters with different lengths
[Figs. 4(e) and 4(f)]. Especially, at maximum values of
WLN, the fidelities are 99.24% and 99.05% for the boxcar
and Gaussian filters, respectively.
Numerically, we find that our nonclassical state is much

more sensitive to pure dephasing compared to nonradiative
decay. Such a nonclassical state with biased noise may be
useful for quantum computation [46]. Even though we do
not investigate the frequency tunability of our nonclassical
source by measuring the Wigner function at different qubit
frequencies, it is still possible to estimate the pure dephas-
ing and the nonradiative decay rates, and how much they
affect the negativity. Our evaluation shows that the tunable
bandwidth of our nonclassical source can be up to
400 MHz with negativities above 0.04 using a Gaussian
filter [26].
Our setup provides a straightforward way to

generate nonclassical states. Compared to pulsed operation
[13–21,47], it has several advantages. (i) It has a higher

(a) (b) (c)

(d) (e) (f)

FIG. 4. Wigner logarithmic negativity (WLN), photon number content, and purity with different filters. These are obtained from the
reconstructed density matrix ρ of the filtered output field using maximum likelihood estimation. In all panels, the markers are from the
experiment whereas the solid curves are from the numerical simulation. On/Off-res and Sim represent the on- or off-resonant cases and
the numerical simulation, respectively. (a) WLN with different τ values for a boxcar filter. The red and blue markers are for the on- and
off-resonant cases, respectively. (b) WLN with different ξ values of the standard deviation of a Gaussian filter. (c) Photon populations for
data shown in (a). ρnn are the diagonal elements of the density matrix and thus present the population of the photon number n of the
emission field. (d) Photon purity for data shown in (a). The purity is given by Trðρ2Þ. (e) and (f) The corresponding fidelities between
experimental and numerical results for the states used in (a) and (b), respectively. The fidelities are calculated according to

F ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1=2ρsimρ

1=2
p

, where ρsim is the numerical density matrix.
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generation rate since the pulsed case requires to wait until
the qubit returns to the ground state. (ii) We operate at the
critical power, generating states with unit efficiency
whereas in the pulsed scheme many photons are needed
for the excitation pulse [20,21]. (iii) For a pulsed source
there is a trade-off between high quantum efficiency and
avoiding population of the higher levels of the qubit. In our
case, the high-level excitation is negligible ≈10−5.
(iv) Using our source in a quantum network, there is no
timing requirement, the receiver can select any time slot of
the continuous stream.
Our experimental results demonstrate that nonclassical

states useful for quantum computation can be obtained
from the steady-state dynamics of a continuously driven
quantum system by applying optimized filters to its
propagating output field. These conclusions can be
extended to a variety of physical systems [48,49].
Recent theoretical work indicates that propagating
Wigner-negative states may also be obtained from driven
systems whose steady-state intracavity field is Wigner-
positive, such as Kerr parametric oscillators [45]. This
finding further broadens the class of systems to which the
techniques shown here are applicable.
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