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I propose a controlled approximation to QCD-like theories with massless quarks by employing
supersymmetric QCD perturbed by anomaly-mediated supersymmetry breaking. They have identical
massless particle contents. Thanks to the ultraviolet insensitivity of anomaly mediation, dynamics can be
worked out exactly when m ≪ Λ, where m is the size of supersymmetry breaking and Λ the dynamical
scale of the gauge theory. I demonstrate that chiral symmetry is dynamically broken for Nf ≤ 3

2
Nc while

the theories lead to nontrivial infrared fixed points for larger number of flavors. While there may be a phase
transition as m is increased beyond Λ, qualitative agreements with expectations in QCD are encouraging
and suggest that two limits m ≪ Λ and m ≫ Λ may be in the same universality class.
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Introduction.—It has been a long-standing goal in
theoretical physics to understand strongly correlated sys-
tems. Well-known examples are high-temperature super-
conductors in condensed matter physics and strong
interaction in particle physics. The latter is described by
quantum chromodynamics (QCD) based on SUð3Þ gauge
theory with quarks and gluons as fundamental degrees of
freedom. At high energies, its dynamics can be studied with
perturbation theory thanks to asymptotic freedom. On the
other hand, at low energies, theory becomes strongly
coupled at a scale Λ that makes fundamental degrees of
freedom trapped inside bound states, and typical coupling
constants among bound states are ∼Oð4πÞ beyond the
reach of perturbation theory. In particular, QCD-like
theories with massless quarks are believed to dynamically
break the chiral symmetry [1,2] which has been difficult to
demonstrate analytically.
Certain strongly coupled theories have exact solutions in

the infrared (IR). The important example for the discussion
here is supersymmetric QCD (SQCD) whose dynamics was
worked out by Seiberg [3,4]. Yet SQCD without the quark
mass terms has extra massless degrees freedom, namely
squarks and gauginos, which are not present in QCD. No
limit of SQCD seems to mimic the dynamics of QCD.
One can introduce supersymmetry breaking to SQCD to

mimic nonsupersymmetric QCD [5–10]. In many cases,
there is no full theoretical control, or a sign that there is a

phase transition when supersymmetry breaking becomes as
large as the dynamical scale. If Uð1ÞR is gauged, itsD term
can make the squarks massive [11]. Its impact is controlled
by the R charge even for composite fields and is under a
good control. However, gauginos are still massless and the
theory does not belong to the same universality class as
QCD. Instead, I can introduce an F component to the gauge
coupling

S ¼ 8π2

g2
þ iϑþ θ2

16π2

g2
mλ; ð1Þ

where ϑ is the vacuum angle, andmλ the gaugino mass. All
holomorphic quantities are a function of S and the
supersymmetry breaking effects are well constrained, while
nonholomorphic corrections in Kähler potential cannot be
controlled, such as mass of composite states, including their
signs that are crucial for the symmetry breaking pattern.
The authors of Refs. [5,8–10] avoided this issue by adding
larger quark mass to keep the total mass squared positive,
which in turn makes it impossible to study the massless
quarks. Either approach is not suitable to study the low-
energy limits of massless QCD. There are works using
string theory [12,13], or that using compactification on the
abelian subgroup of the chiral symmetry [14], yet the
progress has been very limited in the four-dimensional field
theories.
I point out that the anomaly-mediated supersymmetry

breaking (AMSB) [15,16] is an exception. It has a property
called ultraviolet (UV) insensitivity, and the supersym-
metry breaking effects are completely controlled at all
energy scales with any description. Therefore, the known
exact results in SQCD can be generalized to include the
effects of AMSB [17]. In addition, SQCD with AMSB
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(ASQCD) makes both squarks and gauginos massive, and
hence its massless particle content is identical to that of
QCD. Therefore, ASQCD is a QCD-like theory. As the
supersymmetry breaking scalem is increased beyondΛ, the
ASQCD reduces completely to QCD. If ASQCD and QCD
are continuously connected, the low-energy limits of QCD
must be in the same universality class as that of ASQCD.
There is no guarantee, however, that there is no phase
transition at a critical valuemc ∼OðΛÞ, and two theories are
not continuously connected. Yet the results I find in this
Letter are encouraging and the two limits m ≪ Λ and
m ≫ Λ may well belong to the same universality class.
Anomaly mediation.—Anomaly mediation of super-

symmetry breaking can be formulated with the Weyl
compensator Φ ¼ 1þ θ2m [11] that appears in the super-
symmetric Lagrangian as

L ¼
Z

d4θΦ�ΦK þ
Z

d2θΦ3W þ c:c: ð2Þ

Here, K (W) is the Kähler potential (superpotential) of the
theory, and m is the parameter of supersymmetry breaking.
When the theory is conformal, Φ can be removed from the
theory by rescaling the fields ϕi → Φ−1ϕi. On the other
hand, violation of conformal invariance leads to super-
symmetry breaking effects. Solving for auxiliary fields, the
superpotential leads to the tree-level supersymmetry break-
ing terms

Ltree ¼ m

�
ϕi

∂W
∂ϕi

− 3W

�
þ c:c: ð3Þ

Dimensionless coupling constants do not lead to super-
symmetry breaking effects because of the conformal
invariance at the tree level. However, conformal invariance
is anomalously broken due to the running of coupling
constants, and there are loop-level supersymmetry breaking
effects in trilinear couplings, scalar masses, and gaugino
masses,

AijkðμÞ ¼ −
1

2
ðγi þ γj þ γkÞðμÞm; ð4Þ

m2
i ðμÞ ¼ −

1

4
_γiðμÞm2; ð5Þ

mλðμÞ ¼ −
βðg2Þ
2g2

ðμÞm: ð6Þ

Here, γi ¼ μðd=dμÞ lnZiðμÞ, _γ ¼ μðd=dμÞγi, and βðg2Þ ¼
μðd=dμÞg2. In general, physical masses are the sum
of contributions from the superpotential (tree level or
nonperturbative), tree-level AMSB (3), and loop-level
AMSB (4), (5), (6).
In the supersymmetric SUðNcÞ QCD with Nf flavors in

the fundamental representation (SQCD), I find at the
leading order of ASQCD

m2
Q ¼ m2

Q̃
¼ g4

ð8π2Þ2 2Cið3Nc − NfÞm2; ð7Þ

mλ ¼
g2

16π2
ð3Nc − NfÞm: ð8Þ

Here, Ci ¼ ðN2
c − 1Þ=2Nc, and m2

Q > 0 in the range Nf <
3Nc where the theory is asymptotically free. Therefore, the
squarks and gauginos acquire mass and the massless
particle content is identical to that of nonsupersymmetric
QCD. As m is increased beyond the dynamical scale of the
gauge theory Λ, gluinos and squarks can be integrated out,
and the theory does become QCD. I do not know a priori
whether the change in m is continuous. There may or may
not be a phase transition as m crosses OðΛÞ. Nonetheless,
SQCD with AMSB is continuously connected to QCD, and
I hope to learn something about the dynamics of QCD by
studying SQCD with AMSB.
The most remarkable property of the anomaly mediated

supersymmetry breaking is its ultraviolet insensitivity. The
expressions for the supersymmetry breaking parameters
above depend on wave function renormalization and
running coupling constants, which jump when heavy fields
are integrated out from the theory. It turns out that the
threshold corrections from the loops of heavy fields
precisely give the necessary jump. Therefore the above
expressions remain true at all energy scales and depend
only on the particle content and interactions present at that
energy scale. This point can be verified explicitly in
perturbative calculations, and is very transparent in the
DR scheme [19].
One way to intuitively understand the ultraviolet insen-

sitivy is the analogy to quantum field theory in curved
spacetime. To describe QCD in a curved spacetime, I
couple the QCD Lagrangian to the background spacetime
metric. When QCD confines, I switch to the chiral
Lagrangian, and I couple it to the same metric. This is
because the backreaction of QCD dynamics to the metric is
suppressed by the Planck scale and can be safely ignored.
For anomaly-mediated supersymmetry breaking, the Weyl
compensator can be viewed as a part of the background
supergravity multiplet. Ignoring the backreaction to the
superspacetime, I couple the field theory to the same
supergravity background no matter what nonperturbative
dynamics takes place.
Since the low-energy dynamics of SQCD is well under-

stood thanks to Seiberg, I couple its low-energy limit to
AMSB to work out the ground state exactly. In particular, I
am interested in the symmetry of the ground state exactly in
the limit m ≪ Λ under a full theoretical control. I will then
discuss how it may be connected to the dynamics of QCD
as m is increased beyond Λ hoping there is no phase
transition, so that the ASQCD and QCD belong to the
same universality class. What I find below is encouraging.
I assume Nc ≥ 3 in the discussions below:
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Nf < Nc.—The dynamics is described in terms of the
meson fields Mij with the nonperturbative Affleck-Dine-
Seiberg (ADS) superpotential

W ¼ ðNc − NfÞ
�
Λ3Nc−Nf

detM

�
1=ðNc−NfÞ

: ð9Þ

The SQCD has a runaway potential and hence no ground
states. When M ≫ Λ2, Mij ¼ Mδij describes the D-flat
direction

Q ¼ Q̃ ¼

0
BBBBBBBB@

1 � � � 0
..
. . .

. ..
.

0 � � � 1

0 � � � 0
..
. ..

. ..
.

0 � � � 0

1
CCCCCCCCA
ϕ; M ¼ ϕ2: ð10Þ

The upper part is an Nf × Nf block, while the lower part
ðNc − NfÞ × Nf. Therefore, the Lagrangian along this
direction in ASQCD is

L ¼
Z

d4θΦ�Φ2Nfϕ
�ϕ

þ
Z

d2θΦ3ðNc − NfÞ
�
Λ3Nc−Nf

ϕ2Nf

�
1=ðNc−NfÞ

: ð11Þ

The corresponding potential is

V ¼
����2Nf

1

ϕ

�
Λ3Nc−Nf

ϕ2Nf

�
1=ðNc−NfÞ����

2

− ð3Nc − NfÞm
�
Λ3Nc−Nf

ϕ2Nf

�
1=ðNc−NfÞ

þ c:c: ð12Þ

Note that there is now a well-defined minimum (see Fig. 1),

Mij ¼ Λ2

�
4NfðNc þ NfÞ

3Nc − Nf

Λ
m

�ðNc−NfÞ=Nc

δij: ð13Þ

The minimum is indeed at Mij ≫ Λ2 which justifies the
weakly coupled analysis. The mass for mesons from
AMSB is loop suppressed and hence can be ignored.
The SUðNfÞQ × SUðNfÞQ̃ flavor symmetry is dynamically
broken to SUðNfÞV . The massless particle spectrum is the
corresponding Nambu-Goldstone bosons (pions) [20]. The
scalar and fermion partners of the Nambu–Goldstone
bosons (NGBs) have mass that grows with m. Naively
increasing m beyond Λ, the only remaining degrees of
freedom are massless NGBs. This seems to match the
expectations in QCD with small number of flavors. There is
no sign of a phase transition and the two limits are likely
continuously connected.

Nf ¼ Nc.—This is the case of quantummodified moduli
space described by the superpotential

W ¼ XðdetM − B̃B − Λ2NcÞ: ð14Þ

Given the successful and highly nontrivial anomaly match-
ing conditions, it is believed that the Kähler potential is
regular at the origin for meson and baryon superfields. By
going to canonical normalization of the fields, I find the
superpotential

W ¼ X

�
λ
detM
ΛNc−2

− κB̃B − Λ2

�
: ð15Þ

Here, λ, κ are dimensionless coupling constants. I find two
candidate ground states which I work out to the first order
in m ≪ Λ.
One is

Mij ¼ λ−1=NcΛδij; B ¼ B̃ ¼ 0;

X ¼ λ−2=Ncm; V ¼ −Ncλ
−2=Ncm2Λ2: ð16Þ

The massless spectrum is the NGBs of SUðNfÞQ ×
SUðNfÞQ̃=SUðNfÞV . The anomalies are matched by the
Wess-Zumino term [21,22] induced by integrating out
massive mesinos.
The other is

Mij ¼ 0; B ¼ B̃ ¼ κ−1=2Λ;

X ¼ κ−1m; V ¼ −ð2κÞ−1m2Λ2: ð17Þ

The massless spectrum is the NGB of spontaneously
broken Uð1ÞB and mesinos that match the anomalies
of SUðNfÞQ × SUðNfÞQ̃.
I cannot determine which minimum is lower without

knowing λ and κ. However, the first one is likely to be
continuously connected to QCD, while it is difficult to
imagine there are massless mesinos in the nonsupersym-
metric limit. Here I rely on the naive dimensional analysis
[23,24] which suggests λ ≈ ð4πÞNc=2 and κ ≈ 4π. Then I

V

Supersymmetric
ADS potential

together with
AMSB

FIG. 1. Schematics of the potential for Nf < Nc. The red curve
is for SQCD with runaway behavior, while the blue curve for
ASQCD has a well-defined minimum.
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find the first minimum Eq. (16) is V ≈ −Ncð1=4πÞm2Λ2,
while the second Eq. (17) is V ≈ −ð1=8πÞm2Λ2.
Therefore, Eq. (16) is the global minimum, where we find
massless NGBs of SUðNfÞQ×SUðNfÞQ̃=SUðNfÞV with
fπ≈Λ=ð4πÞ2, as well as baryons that acquire mass
mB ≈ m. This is an analytic demonstration that QCD with
three colors and three flavors break chiral symmetry with
massless pions and massive baryons.
Nf ¼ Nc þ 1.—The theory is s confining with the

dynamical superpotential

W ¼ 1

Λ2Nf−3
ðdetM − B̃iMijBjÞ: ð18Þ

Again given the successful and highly nontrivial anomaly
matching conditions, it is believed that the Kähler potential
is regular at the origin for meson and baryon superfields.
By going to canonical normalization of the fields, I find the
superpotential

W ¼ λ
detM
ΛNf−3

− κB̃MB: ð19Þ

The corresponding potential for ASQCD for the direction
Mij ¼ ϕδij is

V ¼ Nfλ
2
jϕj2Nf−2

Λ2Nf−6
− λðNf − 3ÞmϕNf þ c:c: ð20Þ

It has a minimum at (see Fig. 2)

ϕ ¼ Λ
� ðNf − 3Þm
ðNf − 1ÞλΛ

�
1=ðNf−2Þ

≪ Λ; ð21Þ

justifying the analysis with the canonical Kähler potential.
The mass for mesons from AMSB is loop suppressed and
hence can be ignored. The vacuum energy is V∼
−Oðmð2Nf−2ÞΛð2Nf−6ÞÞ1=ðNf−2Þ. The massless spectrum is
once again the NGBs of SUðNfÞQ × SUðNfÞQ̃=SUðNfÞV .

There is no sign of phase transition as m is increased
beyond Λ.
Note that rankM ¼ Nc classically. The vacuum with

rankM ¼ Nf > Nc here and below is a genuinely strong-
coupled effect in the electric theory. Yet the description
with the meson field in the magnetic theory is weakly
coupled because of its IR-free dynamics and its small
expectation value, and is hence justified.
Note that the term κB̃MB is renormalizable and the

corresponding trilinear supersymmetry breaking is loop
suppressed Aκ ∼mκ2=16π2. This leads to another candidate
ground state with M11 ¼ B1 ¼ B̃1 ∼m=16π2κ with the
vacuum energy V ∼ −Oðm=16π2Þ4. Clearly the other
minimum is deeper.
Nc þ 2 ≤ Nf ≤ 3

2
Nc.—This range is in the free mag-

netic phase described by an SUðNf − NcÞ SQCD as the
low-energy theory below the dynamical scale Λ with the
superpotential

W ¼ κq̃iMijqj: ð22Þ

Here, q (q̃) are dual (anti)quarks. The mesons M are
canonically normalized. Similarly to the s-confining case of
Nf ¼ Nc þ 1, there is one-loop trilinear coupling that
allows for a minimum with

q ¼ q̃ ¼

0
BBBBBBBB@

1 � � � 0
..
. . .

. ..
.

0 � � � 1

0 � � � 0
..
. ..

. ..
.

0 � � � 0

1
CCCCCCCCA
ϕ;

M ¼

0
BBBBBBBBBBBBBBB@

1 � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 1 0 � � � 0

0 � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 0 0 � � � 0

1
CCCCCCCCCCCCCCCA

χ: ð23Þ

Here, the upper block is ðNf − NcÞ × ðNf − NcÞ while the
lower block Nc × ðNf − NcÞ. This direction has the vac-
uum energy V ∼ −Oðm=16π2Þ4.
There is, however, a deeper minimum. It is found along

the direction Mij ¼ ϕδij. All dual quarks are massive and
can be integrated out, yielding a pure SUðNf − NcÞ
supersymmetric Yang-Mills theory that leads to a gaugino
condensate. The effective superpotential is [25]

V

Supersymmetric
higher power potential

together with
AMSB

FIG. 2. Schematics of the potential for s-confining and free
magnetic phases. The red curve is for SQCD with power-law
behavior, while the blue curve for ASQCD has a well-defined
minimum.
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W ¼ ðNf − NcÞ
�
κNf detM
Λ3Nc−2Nf

�
1=ðNf−NcÞ

: ð24Þ

Note that it is a higher-dimension operator and hence an
irrelevant operator that does not modify the IR-free nature
of the mesons. The potential in ASQCD is

V ¼ NfΛ4

���� κϕΛ
����
2Nc=ðNf−NcÞ

− ð2Nf − 3NcÞmΛ3

�
κϕ

Λ

�
Nf=ðNf−NcÞ þ c:c: ð25Þ

The minimum is at (see Fig. 2)

ϕ ¼ κ−1Λ
�
2Nf − 3Nc

Nc

m
Λ

�ðNf−NcÞ=ð2Nc−NfÞ
≪ Λ ð26Þ

which justifies the analysis with the canonical Kähler
potential for ϕ. The mass for mesons from AMSB is loop
suppressed and hence can be ignored. The massless spec-
trum is once again the NGBs of SUðNfÞQ × SUðNfÞQ̃=
SUðNfÞV . There is no sign of phase transition as m is
increased beyond Λ.

3
2
ðNc þ 1Þ < Nf < 3ðNc þ 1Þ.—The dual theory is the

same as the free magnetic case. However, the superpotential
Eq. (24) becomes relevant and does not justify the analysis
with the canonical Kähler potential for mesons.
Going back to SQCD, this is the case where both electric

and magnetic theories flow to IR fixed points. The
conformal dimension of superfields is given by D ¼ 3

2
R

where R is the nonanomalous Uð1ÞR charge for unitary
representation of superconformal algebra. The wave func-
tion renormalization factors are [26]

ZQðμÞ ¼ ZQ̃ðμÞ ¼
�
μ

μ0

�ð3Nc−NfÞ=Nf

ZQ;Q̃ðμ0Þ; ð27Þ

ZMðμÞ ¼
�
μ

μ0

�ð6Nc−4NfÞ=Nf

ZMðμ0Þ; ð28Þ

ZqðμÞ ¼ Zq̃ðμÞ ¼
�
μ

μ0

�ð2Nf−3NcÞ=Nf

Zq;q̃ðμ0Þ: ð29Þ

Here, μ < μ0 < Λ�, and Λ� is the energy scale where the
theory reaches the IR fixed point. I find

γQ¼ 3Nc−Nf

Nf
; γM ¼ 6Nc−4Nf

Nf
; γq¼

2Nf−3Nc

Nf
:

ð30Þ

Since _γi¼0, all scalar masses vanish. Also, Aκ∝γMþ2γq¼
0. Finally, the exact NSVZ beta-function [27,28] is

βðg2Þ ¼ g4
−ð3Nc − NfÞ þ NfγQ

8π2 − Ncg2
¼ 0 ð31Þ

in the electric theory and

βðg2Þ ¼ g4
−ð2Nf − 3NcÞ þ Nfγq
8π2 − ðNf − NcÞg2

¼ 0 ð32Þ

in the magnetic theory. Therefore the gaugino masses
vanish as well. Namely, the IR limit of the theory has
no impact of AMSB because of its conformal invariance.
The discussion above assumes the theory has already

reached the IR fixed point μ < Λ�. In general, the approach
to IR fixed points is not logarithmic but rather a power law,
because

dg2

dt
¼ βðg2Þ ¼ β0�ðg2 − g2�Þ þOðg2 − g2�Þ2; ð33Þ

and hence (for μ0 > μ > Λ�)

g2ðμÞ − g2�
g2ðμ0Þ − g2�

¼
�
μ

μ0

�
β0�
: ð34Þ

Therefore the gaugino mass near the fixed point is

mλðμÞ ¼ −mβ0�
g2ðμ0Þ − g2�
2g2ðμÞ

�
μ

μ0

�
β0� ð35Þ

and power suppressed. Namely the approach to IR fixed
point is in general rather quick.
What I find here is that nonsupersymmetric theories

become supersymmetric in the IR, an emergent super-
symmetry.
What happens when m is increased? Since the IR theory

does not knowAMSB, it most likely stays as a super-
conformal theory up to m ∼ Λ. Once m crosses OðΛÞ, it
may exhibit a phase transition. In QCD with a large number
of flavors, it is believed that the theory flows to IR fixed
points. The best evidence is the Banks-Zaks fixed point for
large Nc and Nf [29]. Therefore, there may be a phase
transition from a superconformal field theory to a non-
supersymmetric conformal field theory. It may also be the
case that the emergent superconformal symmetry persists
even when m > Λ. Right now I cannot determine which is
the case, but both possibilities are truly fascinating.
Nf ≥ 3Nc.—In this case, the theory is IR free, and the

squark mass Eq. (7) is tachyonic. There is no stable ground
state, and hence ASQCD is not continuously connected
to QCD.
SpðNcÞ.—The above analysis easily carries over to

SQCD based on SpðNcÞ gauge groups [30]. I do not repeat
the discussions here, but point out that SUð2NfÞ flavor
symmetry is dynamically broken to SpðNfÞ for Nf ≤
3
2
ðNc þ 1Þ in ASQCD. For 3

2
ðNc þ 1Þ < Nf < 3ðNc þ 1Þ,
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ASQCD flows to superconformal field theory. This again
matches expectation in nonsupersymmetric QCD based on
SpðNcÞ gauge groups [31]. The caseNc ¼ 1 is special as the
dynamical superpotential for Nf ¼ 3 is renormalizable.
Therefore the mass for mesons from AMSB cannot be
ignored. An analysis with loop-level AMSB is warranted
and will be discussed elsewhere.
SOðNcÞ.—The dynamics of SQCD based on SOðNcÞ

gauge groups are similar, with dynamical symmetry break-
ing of SUðNfÞ flavor symmetry to SOðNfÞ. This case is
interesting given there is an unambiguous notion of
confinement. There are, however, important differences
due to exotic composites and multiple branches [32]. I do
not attempt to discuss it here, and a dedicated study is
warranted [33].
Conclusions.—I proposed a new analysis method of

dynamics of QCD theories by continuously connecting
them to supersymmetric QCD with anomaly-mediated
supersymmetry breaking. They share the same massless
particle contents, and their symmetries appear to be in the
same universality class. This is especially true for small
number of flavors. The analysis here is a demonstration of
dynamical chiral symmetry breaking in QCD in a con-
trolled approximation. For larger number of flavors, super-
symmetric QCD with anomaly-mediated supersymmetry
breaking actually restores supersymmetry in the IR
(emergent supersymmetry), leading to superconformal field
theories. It supports the conventional wisdom that QCD
with a large number of flavors flows to an IR fixed point.
I believe this analysis method opens up new avenues to
study dynamics of nonsupersymmetric gauge theories
including chiral ones [34,35].
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