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We present a systematic treatment of scattering processes for quantum systems whose time evolution is
discrete. We define and show some general properties of the scattering operator, in particular the
conservation of quasienergy which is defined only modulo 2π. Then we develop two perturbative
techniques for the power series expansion of the scattering operator, the first one analogous to the iterative
solution of the Lippmann-Schwinger equation, the second one to the Dyson series of perturbative quantum
field theory. We use this formalism to compare the scattering amplitudes of a continuous-time model and of
the corresponding discretized one. We give a rigorous assessment of the comparison for the case of
bounded free Hamiltonian, as in a lattice theory with a bounded number of particles. Our framework can be
applied to a wide class of quantum simulators, like quantum walks and quantum cellular automata. As a
case study, we analyze the scattering properties of a one-dimensional cellular automaton with locally
interacting fermions.
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Introduction.—Simulation of the time evolution of an
arbitrary quantum system on a classical computer is a
computationally hard task. In one of the seminal papers of
quantum computation [1], Feynman suggested that this
problem could be evaded by having a quantum system
simulate another one. This intuition was proved to be
correct [2]: a quantum computer (or universal quantum
simulator) can indeed efficiently simulate any quantum
system evolving through local interactions.
In recent years, there has been an increasing interest in

quantum simulators, with a broad range of theoretical
proposals (see, e.g., Refs. [3–10] and the reviews [11,12]),
as well as various experimental proofs of concept [13–17].
Except for selected cases where the dynamics of the

system can be mapped into the dynamics of the simulator
(e.g., in the trapped ion simulation of the Dirac equation
[18]), one has to engineer a discrete quantum model of the
system to be simulated. The most studied class of quantum
simulators (as the ones which we previously cited) are
“Hamiltonian-based.” In this setting, the experimenter is
supposed to be able to turn on and turn off Hamiltonians
from a given set. Another class of quantum simulators are
quantum cellular automata (QCA) (see Refs. [19–25] and
the recent reviews [26,27]) which consist of a translational
invariant network of local quantum gates implementing the
discrete-time evolution of a lattice of quantum systems,
each one interacting only with a finite number of neighbors.
QCAs and in particular quantum walks (QWs) [28], which
can be thought of as the one particle sectors of QCAs, have
been considered as a simulation tool for relativistic quan-
tum fields [29–35] and as discrete approaches for studying
the foundations of quantum field theory [34,36–39].

Once a simulation framework has been chosen, one
needs some tools to assess the quality of the simulation and
quantify how close the evolution of the discrete model and
that of the target system are. This is usually achieved by
applying the Lie-Trotter-Kato product formula [40] as
shown in Ref. [2] for a quantum system whose
Hamiltonian is the sum of local interactions, i.e.,
H ¼ P

k
i¼1 Hi. Then, the discrete time-step evolution

ðeiH1τ…eiHkτÞt=τ [41] approaches the target evolution
eiHt as τ → 0 [44]. Typically, if a fixed error threshold
must not be exceeded, the larger t is, the smaller τ has
to be: long time evolutions demand quantum simulators,
which evolve over very short time steps. For finite
dimensional systems, a detailed account of the errors for
quantum simulations based on product formulas can be
given [46,47].
What happens now if we consider the limit t → ∞? This

is the situation we encounter in scattering processes [48,49]
in which we study the evolution of wave packets whose
evolution is asymptotically free in the far past and in the far
future. The scattering operator (or S matrix) is a key source
of information about a physical system, and hence the
importance of understanding it in quantum simulators with
a discrete time evolution. Since an S matrix can be defined
only for infinite dimensional systems, the methods
employed for finite dimensional systems are no longer
of use. Moreover, we cannot even generally claim that the
scattering operator of a continuous-time theory is the limit
of the scattering operator of a Trotterized model. This
would be true if the two limits τ → 0 (for the convergence
of the Lie-Trotter-Kato formula) and t → ∞ (inherent in the
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definition of the S matrix) commuted. From the Moore-
Osgood theorem, a sufficient condition for the exchange of
two limits is the uniform convergence of one of the two.
Unfortunately, the limit of the Lie-Trotter-Kato formula is
generally only locally uniform in t [50].
One could bypass this technical issue by considering a

finite dimensional simulation that runs for a sufficiently
large time T such that the scattering process takes place.
This is a standard procedure and it is the one implemented
by Ref. [7], which addresses the problem of simulating
scattering amplitudes in quantum field theory. This
approach has the technical advantage that the problem
can analyzed in a more manageable finite-dimensional
framework and the mathematical tools of, for example,
Ref. [51] can be applied in order to asses the error. On the
other hand, this procedure is not optimized for scattering
processes since it requires that any process, not only the
scattering ones, is simulated within the same error thresh-
old. We may expect that, if we focus on scattering
amplitudes (and maybe only a subset of them), then the
time step τ (required to obtain the same fidelity) could be
smaller. A parallel reasoning has been made in Ref. [52],
where the error introduced by the Lie-Trotter-Kato formula
has been evaluated for localized observables.
Therefore, we are asking the following question: how

small does τ have to be such that the scattering amplitudes
of the discrete-time simulation reliably recover the scatter-
ing amplitudes of the continuous model?
In this Letter we make the first fundamental steps to

answering such a question. We develop the theoretical tools
needed to define and compute the scattering operator for a
quantum system whose time evolution is discrete. We will
show how to adapt some of the tools of standard continuous
time scattering theory to the discrete time case. In particu-
lar, we have two approaches to the perturbative expansion
for the S matrix: the first one is analogous to the expansion
of the Lippmann-Schwinger equation, the second one to the
Dyson series of perturbative quantum field theory. Our
analysis will show that time discreteness can introduce a
richer diversity of scattering phenomena. This is an
analogous of the Umklapp scattering in solid state physics
and it is due to the fact that, for discrete time evolution, the
quasienergy is conserved modulo a constant.
We then discuss the comparison between the scattering

amplitudes of a continuous-time theory and the ones of a
corresponding discrete-time one. For systems with
bounded energy, we prove and quantify the convergence
of the discrete-time scattering amplitudes to the continuous
time one as the discretization step τ goes to 0.
Finally, we apply the theoretical analysis to a one-

dimensional discrete model for which the two-particle
dynamics is analytically known.
General scattering theory for discrete-time dynamics.—

Let us assume that a single time-step evolution is described
by the unitary operator U ∈ BðHÞ which may describe

many particles in interaction or one particle with a
potential. We denote with U0 ∈ BðHÞ the corresponding
free evolution, i.e., the evolution of our quantum system
when the interaction (or the potential) is neglected.
As usual, we assume that U0 is “easy,” in the sense
that it can be fully diagonalized (e.g., U0 ¼ e−iH0 with
H0 ¼ ðℏ2=2mÞ∇2, the Hamiltonian of a nonrelativistic free
particle). In this Letter we will consider elastic scattering
processes, the generalization to multichannel scattering
being left for future works. The main issue in a theory
of scattering is to give a precise meaning to the statement
“Unjψi looks asymptotically free as n → −∞.” For that
statement to be true, there must be a state jψiin ∈ H
such that limn→−∞kUn

0jψiin −Unjψiink ¼ 0. An analogous
statement can be made for the future asymptotic
regime (n → þ∞). Therefore, one requires that the wave
operators Ω�

Ω� ≔ s-lim
n→∓∞

U†nUn
0PacðU0Þ; ð1Þ

exist [48] [s-lim is the limit in the strong operator topology,
and PacðU0Þ is the projector on the subspace of absolute
continuity of U0]. As is the case in most applications, we
will assume that U0 has only an absolute continuous
spectrum and has a generalized eigenvector expansion of
the kind

U0 ¼
Z
B
e−iωðkÞjkihkjdk; ð2Þ

where B ⊆ Rn, ωðkÞ is smooth, and we employed the Dirac
notation for generalised eigenvectors [53]. For example, if
U0 describes the evolution of a free particle, then k denotes
the momentum and B ¼ R3. On the other hand, if the
particle evolves on a discrete lattice then B ⊆ Rn is the first
Brillouin zone and k is the quasimomentum.
The existence of the wave operators is a nontrivial and

central problem in scattering theory. Reference [54] proves
a nice generalization of the Kato-Rosenblum theorem for
unitaries which states that, if U −U0 is a trace-class
operator, then Ω� exist and RanðΩþÞ ¼ RanðΩ−Þ ¼
Ran½PacðUÞ�. If Ω� exist, it is easy to see that they are
isometric (Ω†

�Ω� ¼ I) and obey the intertwining relation

UΩ� ¼ Ω�U0: ð3Þ

Moreover, if Ω� have the same range, RanðΩþÞ ¼
RanðΩ−Þ, the scattering operator (or S matrix)

S ≔ Ω†
−Ωþ; ð4Þ

is a unitary operator. The S matrix is the operator that
relates in and out asymptotes, i.e., incoming and outgoing
particles, and it is the main object of scattering theory.
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A straightforward consequence of Eq. (3) is the follow-
ing commutation relation:

½S;U0� ¼ 0: ð5Þ

Despite its simplicity, Eq. (5) has important consequences.
The analogous equation for a continuous time dynamics
would have been ½S; e−iH0t� ¼ 0 for any t ∈ R, which
implies ½S;H0� ¼ 0: namely, scattering processes conserve
the energy. However, there exists more than one exponen-
tial representation of a unitary operator; for example, we
may have U0 ¼ e−iH0 with H0 ¼

R
R p2dEp or U0 ¼ e−iH̃0

with H̃0 ¼
R
Rðp2mod2πÞdEp: the energy eigenstates

whose corresponding eigenvalues differ by 2π are identi-
fied. Therefore, from Eq. (5) we may only infer that (quasi-)
energy is conserved “modulo 2π” (in the characteristic
units of the discretized model). This feature is also present
in quantum systems with a time-period driving [55]. Such a
periodicity in the energy conservation is responsible for a
richer scattering phenomenology in discrete time models.
This effect bears analogies with the Umklapp scattering in
solid state physics which is caused by the periodicity in
momentum space due to space discretization. In the
following we will further discuss this feature with the help
of an explicit example.
Perturbative methods: The Lippmann-Schwinger

equation.—Once we know that the scattering operator of
our dynamical model is well defined, we need techniques
that allow us to compute the probability amplitude of
scattering processes. In the continuous-time framework,
these tools can be provided by an iterative solution of the
Lippmann-Schwinger equation within time-independent
perturbation theory. We now show the analogous of this
perturbative method for the discrete-time case.
As in the continuous case, the starting point is the

assumption that the expression Ω�jki, suitably interpreted,
is well defined [56]. Then, we can show [57] that the
improper matrix elements of the scattering matrix are given
by the following equation:

hk0jS − Ijki ¼ lim
ϵ→0þ

2πδ2π½ωðk0Þ − ωðkÞ�

× hk0jTðe−iωðkÞþϵÞjki;
TðzÞ ≔ W þWGðzÞU0W;W ≔ U†

0U − I; ð6Þ

where GðzÞ ¼ ðzI −UÞ−1 is the resolvent of U and δ2πðxÞ
denotes the Dirac comb with period equal to 2π.
The operator GðzÞ obeys the Lippmann-Schwinger
equation GðzÞ ¼ G0ðzÞ þ G0ðzÞðU − U0ÞGðzÞ [where
G0ðzÞ ≔ ðzI − U0Þ−1], which yields to the following
Lippmann-Schwinger equation for TðzÞ:

TðzÞ ¼ W þWG0ðzÞU0TðzÞ; ð7Þ

whose solution can be formally given in terms of the
following Born series

TðzÞ ¼
X∞
n¼0

ðWG0ðzÞU0ÞnW: ð8Þ

By substituting Eq. (8) in Eq. (6) we obtain a series
expansion for the matrix elements of S

hk0jS − Ijki ¼ 2πδ2π½ωðk0Þ − ωðkÞ� · lim
ϵ→0þ

½hk0jWjki

þ hk0jWG0ðe−iωðkÞþϵÞU0Wjki þ � � ��: ð9Þ

The convergence of the Born series depends on the
existence of the inverse of the operator I − ðU†

0U −
IÞG0ðzÞU0 and therefore on the spectral radius of
ðU†

0U − IÞG0ðzÞ. Let us consider the simplest case in
which U ¼ U0Vχ is the product of a free evolution U0

and Vχ ≔
P

x e
−iχfðxÞjxihxjÞ with fðxÞ ≠ 0 only on a finite

set. Then ðU†
0U − IÞ is of finite rank and the convergence of

the Born series can be easily established. In particular, it
always converges for sufficiently small χ.
Discrete-time scattering vs continuous-time scattering.—

The formalism of the previous section allows us to address
comparison between the scattering amplitudes of a con-
tinuous-time theory described by a Hamiltonian H ≔
H0 þ V, with a bounded potential jVj < þ∞, and the
scattering amplitudes of the discretized theory U ≔
e−iH0τe−iVτ (τ is the size of the temporal step).
Let us remind that, if we denote with Sc the

scattering operator of the continuous theory, we
have hk0jSðcÞ−Ijki¼−2πiδðωk0 −ωkÞhk0jTðcÞðωkþ iϵÞjki,
where TðcÞ obeys TðcÞðzÞ ¼ V þ VGðcÞ

0 ðzÞTðcÞðzÞ with

GðcÞ
0 ðzÞ ≔ ðz −H0Þ−1. On the other hand, SðτÞ will denote

the scattering operator of the discrete theory: hk0jSðτÞ−
Ijki ¼ −2πiδ2π=τðωk0 − ωkÞhk0jTðτÞðe−iðωkþiϵÞτÞjki, where
TðτÞðzÞ ≔ ði=τÞTðzÞ and TðzÞ was defined in Eq. (6).
Let us make the following assumptions: (i) the
spectrum of H0 is upper bounded by ωM; this condition
applies to a lattice theory with a bounded number of
particles with ωM ≔ Nωmax where ωmax ≔ maxk∈B ωk
and N is the maximum number of particles.

(ii) jGðcÞ
0 ðωk þ iϵÞVj ¼ γ < 1; this technical assumption

guarantees the existence of ðI −GðcÞ
0 VÞ−1 and convergence

of the Born series. Then we can prove [57] that

τ ≤ min

� ffiffiffiffiffiffiffiffiffiffi
2 − γ

p
− 1

jVj ;
π

ωM

�
⇒ TðτÞ − TðcÞ ¼ τRðτÞ; ð10Þ

where the operator valued function RðτÞ is holomorphic in
τ and bounded. Equation (10) rigorously proves the

convergence SðτÞ⟶τ→0SðcÞ. At the leading order in τ we have
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hk0jSðτÞ − SðcÞjki
¼ −2πδðωk0 − ωkÞ · ·τhk0jTðcÞðωk þ iϵÞVjki þOðτ2Þ:

ð11Þ

By further expanding TðcÞðωk þ iϵÞ in Eq. (11)
as a function of V we obtain hk0jSðτÞ − SðcÞjki ¼
−2πτδðωk0 − ωkÞhk0jV2jki þ OðτjVj3Þ þ Oðτ2Þ which
shows that the first deviation introduced by the discretiza-
tion are quadratic in the potential.
The bound for τ in Eq. (10) quantifies the intuition that a

larger energy band and a stronger potential demands
smaller time steps if we want that the scattering amplitudes
of the discrete model and the ones of the continuous model
are close to each other. In particular, the condition
ωMτ ≤ 2π, guarantees that δ2π=τðωk0 − ωkÞ ¼ δðωk0 − ωkÞ
and scattering processes between states with different
energy values are suppressed. This condition is necessary

for the convergence SðτÞ⟶τ→0SðcÞ. If the spectrum of the
energy is not bounded, i.e., ωM ¼ þ∞ then the suppression
of scattering processes at different energy is possible only if
hk0jTðτÞðe−iðωkþiϵÞτÞjki → 0 as τ → 0 for any k, k0 such that
ωk ¼ ωk0 þ 2πn=τ, n ∈ Z. This depends on the model at
hand and such an analysis is beyond the scope of the
present Letter. However, one has that at the leading order
TðτÞðe−iðωkþiϵÞτÞ ¼ V þOðV2Þ the condition is satisfied
provided that the Fourier transform of the potential
V̂ðk; k0Þ decays sufficiently rapidly as jk − k0j → þ∞.
For example, in the limit case of VðxÞ ¼ δðxÞ this condition
cannot be satisfied and the convergence SðτÞ⟶τ→0SðcÞ is not
achieved.
Perturbative methods: Interaction picture and Dyson’s

formula.—A typical situation is the one in which the single-
step unitary evolution has the form

U ≔ U0Uint ¼ e−iH0e−iχHint ;

U0 ≔ e−iH0 ; Uint ≔ e−iχHint ; ð12Þ

where H0 denotes a free evolution Hamiltonian, Hint is an
interaction Hamiltonian and χ is a coupling constant (both
H0 and Hint are assumed to be time independent).
This is the situation one encounters (up to a scale factor)
when simulating a Hamiltonian of the kind H0 þ λHint
by alternating one step of a free evolution and one
step of interaction. In this case, it is convenient to
represent the dynamics in the interaction picture as
follows:

jψðtÞiI ≔ U†t
0 jψðtÞiS; OIðtÞ ≔ U†t

0 OSUt
0;

jψðtþ 1ÞiS ¼ UjψðtÞiS; OS ≔ OSðtÞ ¼ OSð0Þ; ð13Þ

where jψðtÞi is a generic state, O is a generic operator, and
the subscripts S and I denote the Schrödinger and

interaction picture, respectively. From Eq. (13) the time
evolution in the interaction picture is easily derived:

jψðtþ 1ÞiI ¼ UIðtÞjψðtÞiI;
UIðtÞ ≔ U†t

0 UintUt
0 ¼ U†t

0 e
−iχHintUt

0 ¼ e−iχHIðtÞ;

ð14Þ

where we used Eq. (12) and HIðtÞ ≔ U†t
0 HintUt

0 is the
interaction Hamiltonian in the interaction picture. If we
solve Eq. (14) for an arbitrary time we obtain Dyson’s
formula for discrete time dynamics:

jψðt0ÞiI ¼ UIðt0; tÞjψðtÞiI;

UIðt0; tÞ ≔ T
�Yt0−1
s¼t

UIðsÞ
�
¼ T

�
exp

�
−iχ

Xt0−1
s¼t

HIðtÞ
��

;

ð15Þ

where T is the time ordering operator, such that
T½Aðt1ÞBðt2Þ�¼θðt1−t2ÞAðt1ÞBðt2Þþθðt2−t1ÞBðt2ÞAðt1Þ,
θðxÞ denoting the Heaviside function. If it exists, the
scattering operator in the interaction picture is given by

S ¼ s- lim
t→þ∞

UIðt;−tÞ: ð16Þ

Equation (15) allows us to compute matrix elements of the
scattering operator as a formal power series in the coupling
constant χ. For a theory on a lattice with local interactions
Hint ≔

P
x HintðxÞ we have

hψ jSjϕi ¼
Xþ∞

n¼0

ð−iχÞn
n!

X
tj;xj

hψ jT
�Yn
j¼1

HIðtj; xjÞ
�
jϕi; ð17Þ

We observe that each term of the expansion conserves the
energy modulo 2π and, if the interaction is local, the total
momentum is conserved modulo 2π. In many cases,HintðxÞ
is a polynomial in the field operators and, from Eq. (17), we
need to compute time-ordered products of field operators.
The evaluation of the terms appearing in the perturbation
expansion of the S matrix can be performed by applying
Wick’s theorem and can diagrammatically be represented
in terms of Feynman diagrams.
The Thirring cellular automaton.—We will now apply

the techniques of the previous paragraphs to a one-
dimensional Fermionic cellular automaton with a four-
Fermion on-site interaction, called Thirring quantum
cellular automaton [58]. A two-component fermionic field
ψ ≔ ðψ↑;ψ↓ÞT is defined at every lattice site x ∈ Z (see
Fig. 1) and its single step evolution is given by the unitary
operator:
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U ≔ DVχ ; Vχ ≔ eiχ
P

x∈Z
ψ†
↑ðxÞψ↑ðxÞψ†

↓ðxÞψ↓ðxÞ;

D†ψ↑ðx; t − 1ÞD ¼ νψ↑ðx − 1; tÞ − iμψ↓ðx; tÞ;
D†ψ↓ðx; t − 1ÞD ¼ νψ↓ðxþ 1; tÞ − iμψ↑ðx; tÞ;
ν; μ ∈ ½0; 1�; ν2 þ μ2 ¼ 1; χ ∈ ð−π; π�: ð18Þ

The vacuum state of the model and a basis for the Fock
space are defined as follows:

jΩis:t:ψ↑ðxÞjΩi ¼ ψ↓ðxÞjΩi ¼ 0 ∀ x ∈ Z;

ja1; x1;…; an; xni ≔ ψ†
a1ðx1Þ…ψ†

anðxnÞjΩi: ð19Þ

The unitary operator D describes the free evolution
(occurring in discrete time steps) of massive Dirac fermions
on a one-dimensional lattice and can be diagonalized as

D ¼ e−iHD; HD ≔
Z

π

−π
dk

X
s¼�

sωðkÞψ†
sðkÞψ sðkÞ

ψ sðkÞ ≔
X
x∈Z

e−ikx½μψ↑ðxÞ þ gsðkÞψ↓ðxÞ�
ð2πÞ1=2jNsðkÞj

; ð20Þ

where ωðkÞ ≔ arccosðν cos kÞ, jNsðkÞj2 ¼ μ2 þ jgsðkÞj2
and gsðkÞ ¼ s sinωðkÞ þ ν sin k. The nonlinear evolution
Vχ is characterized by the four-fermion interaction of the
Thirring and the Hubbard models [59–62]. We notice that,
as a consequence of definition (19), the Hamiltonian HD is
not positive definite [hence the states of Eq. (19) are
sometimes referred to as pseudoparticle states]. As the full
evolution U preserves the number of particles, it is
convenient to study the dynamics in this representation.
The two particle sector of this quantum cellular automa-

ton can be analytically solved [58] and it is an ideal test for
the perturbative methods previously introduced. We can
show [57] that the matrix elements of S reads as follows:

hk01; s01; k02; s02jS − Ijk1; s1; k2; s2i

¼ δ4πð2p − 2p0Þδ2πðω − ω0Þ
X∞
n¼0

ðeiχ − 1Þnþ1γn; ð21Þ

where we defined ω ≔ s1ωðk1Þ þ s2ωðk2Þ, ω0 ≔
s01ωðk01Þ þ s02ωðk02Þ and γn are suitable coefficients which
depend on ki, si, k0i, s

0
i. From Eq. (21) it is clear that

processes in which there is a transition between different
values of the quasienergy are allowed. The scattering
processes for the Thirring automaton can also be perturba-
tively evaluated by applying Eq. (17). The terms of the
perturbative expansion can be labeled by Feynman dia-
grams. We have, e.g.,

where hk1;k2 are suitable coefficients. We notice the
following technical detail which has no counterpart in
the continuous case: the iterative solution of the Lippmann-
Schwinger equation leads to a power series in the variable
λ ¼ eiχ − 1, while the Dyson series is an expansion in the
variable χ. By expanding λ in powers of χ one can check
that the two approaches agree.
Discussion.—In this work we analyzed scattering proc-

esses for quantum systems which evolve in discrete time
steps. We showed how to adapt some of the theoretical tools
of continuous-time systems to the discrete case. Both the
expansion of the Lippmann-Schwinger equation and the
Dyson series maintain a formal analogy with their con-
tinuous counterparts. However, some intuitions must be
modified, most notably the notion of energy is replaced by
quasienergy: just like momentum in a lattice is defined only
up to a reciprocal lattice vector, if time in discrete energy is
defined only modulo 2π=τ (τ is the time step). This feature
is also characteristic of periodically driven quantum sys-
tems. The periodicity in energy conservation allows for a
wider multiplicity of scattering processes as we have seen
in the case of the Thirring automaton.
We also discussed how the scattering amplitudes of the

Trotterized model can recover the ones of a continuous-
time theory. A rather exhaustive assessment, conveyed by
Eqs. (10) and (11), can be given if the free Hamiltonian is
bounded, as in a lattice theory with bounded numbers of
particles. In this case, if the time step τ is sufficiently small
[see Eq. (10)], the scattering between different values of
energy are suppressed and the discrete-time scattering
amplitudes equal the amplitudes of the continuous model
plus an analytic function of τ that vanishes in the limit
τ → 0. In the case of the unbounded spectrum, the
suppression of scattering between different energy states
cannot be established from the outset but it requires a
deeper examination of the dynamics, a necessary condition
being a rapid decay of the Fourier transform of the
potential.
The application of the present theoretical framework to

the simulation of scattering in a relativistic quantum field

FIG. 1. Thirring QCA unitary step. Each site of the lattice
corresponds to a two-component fermionic field ψðxÞ. The
interaction Vχ is completely local while the free evolution D
involves the nearest neighbors.
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theory raises technical issues, mainly because these models
are only defined via a renormalized (asymptotic) perturba-
tive series of the scattering amplitudes. The existing
approaches (as the one of Ref. [7]) first consider the
simulation (for a finite time T) of a continuous-time lattice
Hamiltonian dynamics, then extrapolate a continuum limit
by considering smaller and smaller lattice spacings.
Following the ideas presented in the present Letter, one
could (i) compare the scattering operator of the continuous
time lattice theory and the scattering operator of the discrete
time theory, and then (ii) extrapolate a (renormalized)
continuous limit.
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