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We propose a mechanism to generate a static magnetization via the “axial magnetoelectric effect”
(AMEE). MagnetizationM ∼E5ðωÞ × E�

5ðωÞ appears as a result of the transfer of the angular momentum
of the axial electric field E5ðtÞ into the magnetic moment in Dirac and Weyl semimetals. We point out
similarities and differences between the proposed AMEE and a conventional inverse Faraday effect. As an
example, we estimated the AMEE generated by circularly polarized acoustic waves and find it to be on the
scale of microgauss for gigahertz frequency sound. In contrast to a conventional inverse Faraday effect,
magnetization rises linearly at small frequencies and fixed sound intensity as well as demonstrates a
nonmonotonic peak behavior for the AMEE. The effect provides a way to investigate unusual axial
electromagnetic fields via conventional magnetometry techniques.
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Introduction.—We are now witnessing a surge of interest
in quantum matter with an unusual relativisticlike dis-
persion relation [1–4]. We mention bosonic (acoustic
waves, photonic crystals, and magnons) and fermionic
(A phase of superfluid helium-3, d-wave superconductors,
graphene, topological insulators) Dirac and Weyl materials.
The key topological features for all of them are the linear
energy spectrum and the presence of several gapless nodes
(valleys) that enable exotic artificial fields, which is unique
for Dirac materials.
The dynamics of excitations in Dirac and Weyl semi-

metals and their interplay with electromagnetic fields is a
rapidly developing research area. We focus on the inverse
Faraday effect (IFE) [5–9] that is a well-known example of
light-matter interaction. In this case, the angular momen-
tum from a dynamical electromagnetic (photon) field EðtÞ
is transferred into the magnetic moment of electrons,
leading to a static magnetization M ∼ EðωÞ ×E�ðωÞ.
This effect was recently investigated for Dirac and Weyl
semimetals in Refs. [10–14].
In this Letter, we propose a mechanism to generate a

static magnetization in Dirac and Weyl semimetals through
dynamical axial gauge fields, whereby the angular momen-
tum is transferred from the axial or pseudoelectric field
E5ðtÞ into the magnetic moment of electrons

M ∼E5ðωÞ ×E�
5ðωÞ: ð1Þ

Therefore, we call this phenomenon the “axial magneto-
electric effect” (AMEE). The AMEE is qualitatively differ-
ent from the IFE. The synthetic nature of the pseudoelectric
field in Dirac and Weyl semimetals means that one can
induce magnetization using phonons without any electro-
magnetic fields. This situation reminds us of the difference
between the Aharonov-Bohm [15] and Aharonov-Casher
[16] effects, where the gauge potentials, while similar, have
a different origin.
The origin of the pseudoelectromagnetic fields is rooted

in the relativisticlike energy spectrum and topology of
Dirac matter. In the case of Dirac semimetals, axial gauge
fields could be generated via strains [17–23] as well as
magnetization textures [24,25]. In graphene, pseudomag-
netic fields were observed experimentally in Refs. [26–29].
Previous work focuses mostly on static axial fields. The
studies related to the dynamics of these fields have quickly
become an active research area. In particular, we mention
ultrasonic attenuation [21,30,31], the acoustogalvanic
effect [32], and torsion-induced chiral magnetic current
[33]. The circularly polarized sound can be generated by
acoustic transducers coupled to acoustic quarter-wave
plates [34]; see also Refs. [35–37]. In addition to the
acoustic method, we also point out recent work on gen-
eration of circularly polarized phonons [38]. It has been
shown that such phonons can be induced optically [39] in
Cd3As2 [40]. Therefore, the proposed AMEE is timely and
instrumental in the elucidation of the axial fields in three-
dimensional semimetals.
The AMEE is universal in the sense of measuring the

response of nodal states to dynamic axial fields regardless

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by Bibsam.

PHYSICAL REVIEW LETTERS 126, 247202 (2021)

0031-9007=21=126(24)=247202(6) 247202-1 Published by the American Physical Society

https://orcid.org/0000-0002-6363-2676
https://orcid.org/0000-0003-2280-8249
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.247202&domain=pdf&date_stamp=2021-06-17
https://doi.org/10.1103/PhysRevLett.126.247202
https://doi.org/10.1103/PhysRevLett.126.247202
https://doi.org/10.1103/PhysRevLett.126.247202
https://doi.org/10.1103/PhysRevLett.126.247202
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


of their origin. Therefore, it could be realized in various
experimental setups where the position of the Weyl nodes
can be manipulated (for a recent study of the manipulation
of the Weyl nodes via light pulses, see Ref. [41]).
By using a dynamical deformation as a characteristic

example, we found that the induced magnetization scales as
M ∝ μω for small frequencies ω at fixed sound intensity.
This is in drastic contrast to the conventional IFE, where
the magnetization scales asM ∝ 1=ω in the dirty limit. The
explanation of this scaling is simple and follows from the
nature of the axial electric field. As with conventional IFEs,
the induced magnetization scales as the second power of
the effective axial electric field E5. Because E5 is propor-
tional to the time derivative of the gauge potentials, which
in turn are determined by the strain tensor uij ∼ ω, it results
in a two powers of frequency difference when the sound
intensity I ∼ ω2 is fixed. Hence, we expect that the AMEE
has the overall scaling ∼ω2 relative to the IFE for conven-
tional metals. Furthermore, our estimates show that the
magnetization induced via the AMEE is within the reach of
modern magnetometry technology such as the supercon-
ducting quantum interference device (SQUID). The corre-
sponding model setup is schematically shown in Fig. 1.

General theory.—For weak deviations from equilibrium,
the magnetization is obtained as a functional derivative of
the effective action S with respect to a magnetic field
M ¼ −limB→0δS=δB. (See Fig. 2 for the corresponding
Feynman diagram.) Here, A5;μ ¼ fA5;0;−A5g is the axial
gauge field that gives rise to a time-dependent axial electric
field E5 ¼ −∂tA5 − ∇A5;0. While the diagram in Fig. 2
resembles that for the chiral anomaly, it has a different
structure, where the external lines correspond to two axial
and one vector gauge fields. Therefore, the chiral anomaly
action does not contribute to the magnetization. This allows
us to calculate the effect separately for each Weyl node. We
further assume that the wave vector of the chiral electric
field is small enough to ignore the internode transitions.
In general, there could be first-order effects, i.e.,M ∼ E5.

They, however, produce an oscillating magnetization that
averages to zero for dynamical axial electric fields as well
as requires an explicit breakdown of the time-reversal
symmetry. Therefore, we focus on a second-order rectifi-
cation effect, which gives a static magnetization even in a
time-reversal symmetric system. This fact makes the
AMEE universal and attractive from a practical point of
view. For example, while the first-order effects cancel in
Dirac semimetals, the AMEE survives.
Without the loss of generality, we assume that E5 is

polarized in the x–y plane. Then, the magnetization for a
single node is

Mz ¼ −iχðω; qÞðE5;ω;q ×E5;−ω;−qÞz; ð2Þ

with the response function χðω; qÞ given by

χðω; qÞ ¼ e3

4ω2

�X
m

Z
d k Immmðω; qÞ ðvmy vmx ∂kxv

m
y − vmy vmy ∂kxv

m
x Þ

þ
X
l≠m

Z
d k Immlðω; qÞðϵl − ϵmÞ½ðϵl − ϵmÞ2ðΩm

xyÞ2 þ vmx vmx gmyy − vmx vmy gmxy� þ ðx ↔ yÞ
�
: ð3Þ

Here, e is the electric charge, the expression for Imnlðω; qÞ
is given in the Supplemental Material (SM) [42], m ¼ �
denotes the electron and hole bands, ϵ� ¼ �

ffiffiffiffiffiffiffiffiffi
v2i k

2
i

p
is the

energy dispersion, vmi ¼ ∂kiϵm is the quasiparticle velocity,

and Ωm
xy and gmij are the Berry curvature [48] and the

quantum metric [49] of the band, respectively (see the
SM [42] for the explicit expressions). The first term in
the curly brackets is the intraband contribution, which

FIG. 1. Schematic model setup for the axial magnetoelectric
effect. Circularly polarized axial electric fields lead to the static
magnetization M ∼ E5ðωÞ ×E�

5ðωÞ of Dirac semimetals. The
resulting magnetization is picked up by a magnetometer
such as SQUID.

FIG. 2. The Feynman diagram used to calculate the AMEE.
The cross denotes an external magnetic field. The wavy lines
represent the axial gauge fields.
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depends only on the dispersion. The second term originates
from interband processes. In this Letter, we focus on the
orbital contribution to the magnetization. The spin con-
tribution is estimated to be weak for intraband processes:
ω ≪ 2jμj (see also Ref. [14] for the IFE results).
The minimal Weyl Hamiltonian

H ¼ λ
X
i

viσipi ð4Þ

was used in the derivation of the response function χðω;qÞ.
Here, λ ¼ � denotes the chirality of Weyl nodes, σi are the
Pauli matrices, p ¼ −i∇ is the momentum operator, and ℏ
and the light velocity c are taken to be unity throughout this
Letter. The description of the axial gauge fields A5;0 and
A5, in general, requires more complicated models where
there is a separation between Weyl nodes in momentum
space and/or energy. For example, A5 appears in a Weyl
semimetal with a broken time-reversal symmetry. We
stress, however, that the AMEE is general and does depend
on the presence of E5 but not the origin of the axial
gauge fields: these gauge fields can be generated by light,
strain, or other means. In addition, we notice that all
nodes contribute additively to the magnetization (see the
SM [42]).
The magnetization given in Eq. (2) with the response

function provided in Eq. (3) represents the first main
result of this Letter. The response function χðω; qÞ can
be applied in both clean and dirty limits and is also valid for
two-dimensional gapless or gapped Dirac semimetals.
Furthermore, the result in Eq. (3) is applicable to both
conventional inverse Faraday and the axial magnetoelectric
effects in Dirac materials.
For a single Weyl node, we find in the q ¼ 0 limit

χ ¼ e3vxvyμ

6π2vzω

�
1

ðωþ i
τÞ2

þ 3

ðωþ 2μþ i
τÞðω − 2μþ i

τÞ
�
; ð5Þ

where μ is the chemical potential, and τ is the scattering
time. Figure 3 shows the real part of χ as a function of ω=μ
for different scattering times. In the ωτ ≫ 1 limit, the first
term in Eq. (5), which is the intraband contribution, reduces
to the result obtained using the semiclassical theory [12]. In
the dirty limit ωτ ≪ 1, the intraband term changes sign.
Note that in this limit the semiclassical treatment does not
apply. The interband contribution diverges at ω ¼ 2μ in the
clean limit, and this divergence disappears when the
scattering time is finite. In contrast, χ diverges in the small
ω limit even for finite scattering time. The induced
magnetization vanishes when the chemical potential
crosses exactly the nodal point. The reason is that the
system has particle-hole symmetry at this point. Under
particle-hole transformation, the current changes sign,
while the axial current remains unchanged [50], and
therefore the correlation function hj5;μj5;νjρi that

determines the magnetization (see Fig. 2 and the
SM [42]) vanishes identically.
Strain-induced AMEE.—As an example, we calculate the

AMEE in strained Dirac semimetals. The axial gauge field
is related to the strain fields as [20]

A5;i ¼
b
e

�
βuiz þ β̃ðbÞδiz

X
j

ujj

�
; ð6Þ

where the Weyl nodes are separated along the z direction, β
and β̃ðbÞ are related to the Grüneisen constants, and uij ¼
ð∂iuj þ ∂juiÞ=2 is the strain tensor with u being the
displacement field. As an example, we consider a circularly
polarized sound wave propagating in the z direction,

u ¼ Re½u0ðex − ieyÞeiðqzz−ωtÞ�; ð7Þ

where ex and ey are unit vectors in the x and y directions as
well as ω ¼ vsqz with the transverse sound velocity vs.
Then the axial vector potential is

A5 ¼ iðex − ieyÞ
bβu0
4e

qzeiðqzz−ωtÞ þ c:c:; ð8Þ

which gives rise to a circularly polarized axial electric field.
Note that since A5 ∝ qz ∝ ω, the axial electric field is
proportional to ω2.
Since the sound velocity is much smaller than the Fermi

velocity ω ≪ vFqz, we can no longer take the qz ¼ 0 limit
as for a conventional IFE. Because the sound frequency is
small compared to the relaxation timescale, the most
experimentally relevant regime is ωτ ≪ 1. On the other
hand, since vz=vs ≫ 1, the condition qzvzτ ≪ 1 can be
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FIG. 3. The frequency dependence of the real part of the
normalized response function χ=χ0 for different scattering
times. The inset shows the results for large frequencies
ω ∼ 2μ, where the interband effects are important. Here,
χ0 ¼ e3vxvy=ð6π2vzμ2Þ, μ is the chemical potential, and τ is
the scattering time.
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easily violated. For example, if we take ω ¼ 1 GHz and
vz=vs ¼ 100, then qzvzτ ¼ 1 for τ ¼ 10 ps. As a compari-
son, the transport scattering time can be as long as 0.2 ns in
the Dirac semimetal Cd3As2 [51]. Therefore, it is necessary
to consider both qzvzτ ≪ 1 and qzvzτ ≫ 1 limits.
The intraband contribution to the magnetization in the

ωτ ≪ 1 and qzvzτ ≪ 1 limit is

Mintra
z ≈M0

�
1 −

3

5
ðqzvzτÞ2

�
μωτ2; ð9Þ

and in the ωτ ≪ 1 and qzvzτ ≫ 1 limit, we derive

Mintra
z ≈ 3M0

1

ðqzvzτÞ2
�
1 −

π

2ðqzvzτÞ
�
μωτ2: ð10Þ

Here, M0¼evxvyðβbu0qzÞ2=ð48π2vzÞ∝ ðu0ωÞ2∝ I, where
I is the intensity of the sound (see, e.g., Ref. [52]). In
Eq. (9), we have expanded the result up to ωðqzvzÞ2 and
omitted the subleading term ∝ ω3. To obtain the above
results, we assumed that μτ is large enough and
qzvzτ ≪ μτ. (See the SM [42] for details.) The interband
contribution becomes important only for a small chemical
potential or a short relaxation time μτ ≪ 1.
At large frequencies (qzvzτ ≫ 1), magnetization Mintra

z
scales as μ=ω, while for the small ones (qzvzτ ≪ 1),
Mintra

z ∝ μωτ2. This scaling is different from the case of
the IFE [12] and is related to a different frequency
dependence of the axial gauge fields. It is worth emphasiz-
ing that the AMEE is different also in the strong depend-
ence on the wave vector qz, which is negligible for the IFE.
Another notable feature is related to the presence of a

peak in the magnetization. The peak appears due to the
momentum dependence of the magnetization. From
Eqs. (9) and (10), we can see that the magnetization
reaches a maximum at ωτ ∝ vs=vz and the peak value is
proportional to μτ. The scaling behavior and the appearance
of a peak of the sound-induced magnetization at small
frequencies are in drastic contrast to the IFE, where the
magnetization is proportional to 1=ω3 in the clean limit and
to τ2=ω in the dirty limit. The scaling of the AMEE with ω
should be robust as long as the strains can be interpreted as
effective axial gauge fields and the deviations from the
relativisticlike spectrum are small.
To estimate the effect, we use the following para-

meters for the Dirac semimetal Cd3As2 [53–55]:
vx ¼ 8.47 eVÅ, vy ¼ 8.56 eVÅ, vz ¼ 2.16 eVÅ, b ¼
0.16 Å−1, and vs ¼ 1.6 × 103 m=s, which is about 200
times smaller than vz. The chemical potential is fixed to be
0.2 eV. We further assume that β ¼ 1 [56] and the sound
intensity is I ¼ 10 W=cm2 (see, e.g., Refs. [58,59]). In
Fig. 4, we show the numerical results for the frequency
dependence of the magnetization at different scattering

times. The black thin line is plotted using the first term in
Eq. (10): Mz ¼ 3M0μω=ðqzvzÞ2 ∝ 1=ω.
For τ ¼ 0.01 ps, which is of the same order as the

quantum lifetime measured in Cd3As2 [51], the magneti-
zation scales linearly with ω and the slope is proportional to
τ2, and for τ ¼ 5 ps, it scales as 1=ω for ω=ð2πÞ≳ 2 GHz.
The peak is clearly observed for τ ¼ 5 ps. The positions
and heights of the peaks are in agreement with our
estimates in Eqs. (9) and (10). For τ ¼ 1 ps at
ω=ð2πÞ ¼ 0.2 GHz, the generated magnetic field strength
is μ0Mz ≈ 1 μG. Thus, the magnetic flux through a sample
of diameter 1 mm is about one-tenth of the flux quantum,
which is 5 orders above the SQUID threshold [60,61]. With
the decrease of τ, the magnetization decreases significantly,
but it is still detectable even for τ ¼ 0.01 ps at ω=ð2πÞ ¼
0.1 GHz. The interband correction to the magnetization for
τ ¼ 1 ps and τ ¼ 5 ps is negligible, while for τ ¼ 0.01 ps
it contributes about 7% of the total magnetization in the
plotted frequency region. Therefore, as one might naively
expect, for large chemical potentials, the interband effects
play a minor role in the sound-induced processes.
Unlike the IFE, where the wave vector of light is

negligibly small, qz can be of the same order as the
Fermi wave vector μ=vz for the AMEE. Thus, electrons
can backscatter on the Fermi surface at qzvz ∼ 2μ for strong
(pseudo)spin-flipping scattering potentials, giving rise
to a second peak in the induced magnetization. (See the
SM [42] for details.)
Conclusion.—We propose a dynamical axial magneto-

electric effect where a static magnetization is generated as a
result of the transfer of the angular momentum of the axial
gauge field E5ðtÞ to the orbital magnetization of the
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FIG. 4. The frequency dependence of the induced magnetiza-
tion for Cd3As2 for different scattering times at the fixed sound
intensity. Here, μ0 is the vacuum permeability. The results for
τ ¼ 0.01 ps are multiplied by 103. The chemical potential is taken
to be 0.2 eV, and the sound intensity is 10 W=cm2. The black thin
curve shows the magnetization calculated using the first term in
Eq. (10).
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electron quasiparticles. The resulting magnetization is
of the second order in dynamical fields and reads
as M ∼E5ðωÞ ×E�

5ðωÞ.
The proposed axial magnetoelectric effect is universal

with respect to the origin of the dynamic axial fields and
could appear in many systems. As an example, we propose
to use dynamical deformations (sound) in Dirac and Weyl
semimetals to excite these fields and generate static
magnetization. We found that, unlike the IFE, the induced
magnetization scales as ω (1=ω) rather than 1=ω (1=ω3) for
small (large) frequencies in the dirty limit and at fixed
sound intensity.
By using realistic model parameters, we estimated the

induced magnetization in the Dirac semimetal Cd3As2.
Being within experimental reach, the effect provides a way
to investigate unusual axial electromagnetic fields via
conventional magnetometry techniques.
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