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Here, we introduce and apply non-Abelian tensor Berry connections to topological phases in multiband
systems. These gauge connections behave as non-Abelian antisymmetric tensor gauge fields in momentum
space and naturally generalize Abelian tensor Berry connections and ordinary non-Abelian (vector) Berry
connections. We build these novel gauge fields from momentum-space Higgs fields, which emerge from
the degenerate band structure of multiband models. First, we show that the conventional topological
invariants of two-dimensional topological insulators and three-dimensional Dirac semimetals can be
derived from the winding number associated with the Higgs field. Second, through the non-Abelian tensor
Berry connections we construct higher-dimensional Berry-Zak phases and show their role in the
topological characterization of several gapped and gapless systems, ranging from two-dimensional Euler
insulators to four-dimensional Dirac semimetals. Importantly, through our new theoretical formalism, we
identify and characterize a novel class of models that support space-time inversion and chiral symmetries.
Our work provides a unifying framework for different multiband topological systems and sheds new light
on the emergence of non-Abelian gauge fields in condensed matter physics, with direct implications on the
search for novel topological phases in solid-state and synthetic systems.
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Introduction.—Non-Abelian Berry connections [1–3]
play a central role in multiband systems with degenerate
spectra. These connections behave like non-Abelian vector
gauge fields in momentum or parameter space and have
been applied in different research areas ranging from
quantum computation [4,5] to topological phases of matter
[6,7]. The topology of several multiband systems is
naturally encoded in non-Abelian Berry connections that
are responsible for the quantum spin Hall effect in two
dimensions [8], the electric polarization in three dimen-
sions [9,10] and for the second Chern number in four
dimensions [9,11,12]. Non-Abelian Berry connections give
rise to Wilson loops, which are a powerful tool of
investigation in topological matter [8,13–18]. Moreover,
topological Bloch oscillations in topological crystalline
insulators [19] and higher-order topological insulators [20]
are naturally related to the existence of non-Abelian Berry
connections, which influence the dynamics of wave packets
[21,22]. Importantly, a generalization of Abelian Berry
connections has been recently proposed [23,24], where the
new connections behave like Abelian antisymmetric tensor
(Kalb-Ramond [25]) gauge fields in momentum or param-
eter space. These tensor Berry connections have been
employed to characterize the topology of 3D chiral topo-
logical insulators [24] and 4D topological semimetals
[23,26,27] where the Dixmier-Douady (DD) invariant
replaces the Chern number. The theoretical developments
recently led to the experimental measurement of the DD
invariant in 4D synthetic systems [28,29].

The main goal of this Letter is to unveil the existence of
novel non-Abelian Berry connections, coined non-Abelian
tensor Berry connections, which behave like non-Abelian
antisymmetric gauge fields in the momentum space of
multiband systems with degenerate spectra. These types of
tensor fields naturally appear in high-energy physics
[30,31] where they are defined in real spacetime, while
in mathematical literature they are known as non-Abelian
gerbe connections [32–34]. Here, we build these new
connections by combining the conventional non-Abelian
Berry curvature together with non-Abelian scalar fields that
behave as momentum-space Higgs fields. Within the
framework of topological phases of matter, considering
several gapless and gapped systems in different dimen-
sions, we will show that these Higgs fields and non-Abelian
tensor Berry connections emerge from band structures,
hence allowing us to derive their topological bulk
invariants.
Finally, we will show the existence of a novel class of

topological phases characterized by topological invariants
associated to non-Abelian real bundle gerbes. These
systems defined for gapped ð2nþ 1Þ-D and gapless
ð2nþ 2Þ-D models are characterized by space-time inver-
sion and chiral symmetries, which give rise to degenerate
spectra with real Bloch wave functions. We will provide
two explicit models in three and four dimensions, respec-
tively, where their topological invariants are directly related
to SO(4) tensor Berry connections. Importantly, through
these new tensor connections, novel higher-dimensional
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models (with an eventual higher number of bands) in this
class can be easily identified.
Our work provides an unifying theoretical framework for

different multi-band topological systems and our results
shed light on the existence of novel gauge structures and
geometric phases in quantum matter, with important
implications on the search for novel topological phases
in solid-state and synthetic setups.
Momentum-space Higgs field.—We start by generalizing

the construction of momentum-space Higgs fields in multi-
band models. These non-Abelian scalars will play a central
role in the definition of non-Abelian tensor Berry con-
nections as will show in the next section. We note that
non-Abelian complex scalar fields in parameter space have
been previously considered in the context of fictitious ’t
Hooft-Polyakov monopoles [35–38]. However, their
formulation in multiband topological models and their role
in topological phases of matter have never been analyzed
in detail. The main goal of this section is thus to fill
this gap. Given a degenerate Bloch state juðkÞi ¼
ðju1ðkÞi; ju2ðkÞi;…; juNðkÞiÞT associated with N degen-
erate bands with energy EðkÞ, with k referring to the
momenta of a generic lattice system, we define the matrix
components Φ̃ab of a non-Abelian scalar field Φ̃ as follows:

Φ̃ab ¼ huajGjubi; ð1Þ

where fa; bg ¼ 1;…; N. Here, Φ̃ ¼ ϕ̃iTi, where ϕ̃i are the
vector components of Φ̃ and Ti are the generators of a
UðNÞ, SUðNÞ, or SOðNÞ Lie algebra. Importantly, the
matrix G is related to certain symmetries of the
given lattice model. In particular, all the systems
discussed in this Letter share (besides time-reversal
symmetry) the 2D inversion symmetry, namely,
I2DHðk1; k2; k3; …; knÞI−1

2D ¼ Hð−k1; −k2; k3; …; knÞ,
where, for simplicity, we identify k1 and k2 with kx and ky,
respectively. In this way, we will take G≡ I2D in the rest
of the Letter (clearly, the representation of I2D is model
dependent). Moreover, we have that Φ̃ · Φ̃ ¼ ΛI, where I
is the N × N identity matrix, the dot symbol · represents
the matrix product and Λ is a momentum-dependent
normalization factor. We then define the corresponding
normalized quantity given by

Φ ¼ Φ̃
ffiffiffiffi

Λ
p ; Φ ·Φ ¼ I: ð2Þ

Here, Φ represents the momentum-space Higgs field that
we will employ in the rest of the Letter. However, before
introducing the non-Abelian tensor Berry connections, we
first propose to show that the topology of the Higgs field
has relevant implications in topological phases. In quan-
tum field theory, the topology of the Higgs field in
three-dimensional space is given by the winding number
[39–41]

wðS2Þ ¼ 1

16πi

Z

S2

dSiϵijktrðΦ · ∂jΦ · ∂kΦÞ; ð3Þ

which represents the magnetic charge on the two-
dimensional sphere S2 related to the residual U(1) gauge
invariance of ’t Hooft-Polyakov monopoles. In a similar
way, we can construct the winding number on the two-
dimensional torus T 2 (i.e., the first Brillouin zone of a
lattice system). To give a first concrete application of the
winding number associated with the Higgs field, we
consider the Bernevig-Hughes-Zhang (BHZ) model for
2D quantum spin Hall (QSH) insulators [42]. The corre-
sponding momentum space Hamiltonian is given by

HBHZ ¼ γ1 sin kx þ γ2 sin ky þ γ3ðm − cos kx − cos kyÞ;
ð4Þ

where γ1 ¼ −σy ⊗ σz, γ2 ¼ −σy ⊗ σx, and γ3 ¼ σx ⊗ σ0
and σi are the Pauli matrices (here, we have adopted a
chiral-invariant basis). Its degenerate spectrum is given by

E� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þm2 − 2mðcos kx þ cos kyÞ þ 2 cos kx cos ky
q

;

ð5Þ

and at half filling, the time-reversal-invariant topological
phase holds for jmj < 2 (m ≠ 0) for which the Z2 invariant
is 1. We can now build the Higgs field for this model by
taking G ¼ σ0 ⊗ σy (which is related to I2D) and jui the
doubly degenerate Bloch state associated with the lower
occupied bands

Φ ¼ σifi

jEj ; ð6Þ

with fx¼sinkx, fy ¼ m − cos kx − cos ky, and fz ¼ sin ky.
By applying the formula for the winding number in Eq. (3)
on T 2, we obtain

wðT 2Þ ¼
Z

T2

d2k
cos kx þ cos ky −m cos kx cos ky

4πjEj3
¼ signðmÞ; jmj < 2; ð7Þ

with wðT2Þ ¼ 0 for jmj > 2. Thus we recognize the
absolute value of the winding number jwðT 2Þj as the Z2

invariant in 2D QSH insulators. Notice that the integrand
of the above winding number has a maximum at the Γ
point, i.e., in correspondence with the gap closing point at
the topological phase transition (jmj ¼ 2) of the BHZ
model as shown in Fig. 1.
The winding number on the sphere wðS2Þ has also

relevant applications in gapless topological phases. In this
case, we consider the linearized momentum-space
Hamiltonian of a 3D Dirac semimetal [43] given by
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H3D ¼ γ1kx þ γ2ky þ γ3kz; ð8Þ

with γ1, γ2 and γ3 the same Dirac matrices defined in
Eq. (4). The corresponding Higgs field Φ, built from the
same G-matrix as for the previous model, is given by

Φ ¼ −
kxσx þ kyσz þ kzσy

jkj ; ð9Þ

such that

wðS2Þ ¼ 1

2π

Z

S2

dSi
ki
jkj3 ¼ 2: ð10Þ

This shows that the 3D Dirac point behaves like a
momentum-space monopole [44,45] and that jwðS2Þj
represents its topological charge. We point out that this
result can be naturally extended to N-degenerate Dirac
cones [46] where jwðS2Þj ¼ N, such as in double Dirac
semimetals with N ¼ 4 [47,48].
Non-Abelian tensor Berry connections.—Through the

momentum-space Higgs field Φ we can now build novel
gauge connections that we coin non-Abelian tensor Berry
connections Bij. They are defined as follows:

Bij ¼ Φ · Fij; ð11Þ

where Fij is the non-Abelian Berry curvature [21,22]

Fij ¼ ∂iAj − ∂jAi − i½Ai;Aj�; ð12Þ

with Ai the non-Abelian Berry connection and ∂i ≡ ∂ki .
Under gauge transformations jui → Ujui we have that

Fij → U · Fij · U−1; Φ → U ·Φ ·U−1; ð13Þ

where U is a Lie-algebra-valued matrix, such that Bij also
transforms in a gauge-covariant way; we note that the trace
over the degenerate-band indices of all these quantities is
gauge invariant. The tensor gauge field Bij behaves as a
non-Abelian Kalb-Ramond field [30,31,49] in momentum
space and its curvature tensor is given by

Hijk ¼ DiBjk þ DjBki þ DkBij; ð14Þ

such that

Hijk → U ·Hijk ·U−1; ð15Þ

with Djf ¼ i∂jf − ½Aj; f� the covariant derivative (here, f
is a generic Lie-algebra valued function). Furthermore,
there exist natural generalizations of Bij, named C fields,
which are three-form gauge fields [50]. Thus, a non-
Abelian higher-tensor Berry connection can be built from
Hijk as follows:

Cijk ¼ Φ ·Hijk; ð16Þ

which gives rise to its own higher curvature tensor.
Similarly to Bij, Cijk also transforms in a gauge-covariant
way and its trace is gauge invariant. Antisymmetric tensor
fields as Bij and Cijk are known in differential geometry
and topology as gerbe connections, which are related to
bundle gerbes [32] and higher bundle gerbes [33,50],
respectively. These structures naturally generalize fiber
bundles [51]. Moreover, similarly to Wilson loops, it is
possible to build from these gauge connections nonlocal
gauge operators, named Wilson surfaces [52,53] and
Wilson volumes. For our purpose, the simplest gauge
invariant quantities associated with Bij and Cijk are,
respectively, given by

ϒBðM2Þ ¼ 1

2π

Z

M2

d2k trBxy;

ϒCðM3Þ ¼ 1

ð2πÞ2
Z

M3

d3k trCxyz; ð17Þ

where M2 and M3 are 2D and 3D compact manifolds,
respectively. These expressions naturally generalize non-
Abelian Berry-Zak phases [2] in higher dimensions.
We now revisit some known topological phases and

show that their topological invariants can be formulated in
terms of the higher-dimensional non-Abelian Berry-Zak
phases. 2D Euler insulators are the prototypical example of
topological phases characterized by space-time inversion
IT (C2 × T ) with time-reversal symmetry T 2 ¼ 1 and
a Euler number induced by a SO(2) Berry connection
[54–60]. A simple model with four bands is given by the
BHZ Hamiltonian in Eq. (4), but now with the Dirac
matrices in a real representation of the Clifford algebra:
γ1 ¼ σz ⊗ σ0, γ2 ¼ σy ⊗ σy and γ3 ¼ σx ⊗ σ0. To con-
struct the Higgs field, we consider G ¼ σx ⊗ σy such that
Φ ¼ −σy for the two degenerate lower bands and obtain

ϒBðT2Þ¼ 1

2π

Z

T2

d2ktrBxy¼2signðmÞ; jmj<2; ð18Þ

FIG. 1. (Left) Band structure of the topological phase in the
BHZ model at m ¼ 1.3. (Right) Plot of the integrand of the
winding number wðT2Þ for the BHZ model at m ¼ 1.3. The
maximum of the function is at the Γ point.
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with ϒBðT 2Þ ¼ 0 for jmj > 2. Notice that ϒB coincides
with topological Euler invariant e1, while Bxy is math-
ematically equivalent to a gauge connection for a real
bundle gerbe [61,62]. As we will see more in detail in the
next section, real bundle gerbes will play a central role in
the characterization of higher-dimensional topological
phases with real Bloch wave functions. To reveal the role
of C connections, we consider the linearized Hamiltonian
of a 4D Dirac semimetal described by the following
momentum-space Hamiltonian

H4D ¼ γ1kx þ γ2ky þ γ3kz þ γ4kw; ð19Þ

where we have employed the same Dirac matrices as for the
3D Dirac semimetal in the previous section together
with γ4 ¼ −σy ⊗ σy. We derive the corresponding Higgs
field Φ with G ¼ σ0 ⊗ σy (which is associated to the 2D
inversion for kx and ky) and obtain the following topo-
logical invariant

ϒCðS3Þ ¼ 1

ð2πÞ2
Z

S3

dki ∧ dkj ∧ dkktrCijk ¼ 2; ð20Þ

which we thus identify as the Z2 invariant of the 4D Dirac
point. So far, we have discussed topological phases that
were already studied in the literature. In the next section,
we will employ the non-Abelian tensor Berry connections
to unveil the existence of new topological states in three and
four dimensions.
Topological phases with space-time inversion and chiral

symmetries.—Topological phases with real Bloch states
appear in spinless models with space-time inversion IT
(T 2 ¼ 1). The best known examples in this class are given
by the 2D Euler insulators [54–57,59,60], 3D real Dirac
semimetals [63,64] and Z2 nodal-line semimetals [65–69]
where SO(N) fiber bundles emerge in momentum space
due to the IT symmetry. Here, Euler, Pontryagin, and
Stiefel-Whitney invariants replace Chern numbers [51]. We
now consider a novel class of models with real Bloch states
that also supports chiral symmetry. In this case, SO(N) real
bundle gerbes [61,62] that generalize the SO(N) fiber
bundles become relevant in the description as we show
below. When a quantum system has time-reversal T
(T 2 ¼ 1), inversion I and chiral symmetry S the momen-
tum-space Hamiltonian density HðkÞ satisfies

T HðkÞT −1 ¼ Hð−kÞ; IHðkÞI−1 ¼ Hð−kÞ;
SHðkÞS−1 ¼ −HðkÞ: ð21Þ

The corresponding topological invariants play a role in
ð2nþ 1Þ-D gapped and ð2nþ 2Þ-D gapless phases with
n ≥ 1. Their existence relies on the real representation of
the Clifford algebra in terms of 2nþ2 × 2nþ2 Dirac matrices.
We now provide two explicit examples for n ¼ 1. In three

dimensions, the above symmetries are supported, for
instance, by the following model

H3D ¼ γ1 sin kx þ γ2 sin ky þ γ3 sin kz

þ γ4ðm − cos kx − cos ky − cos kzÞ; ð22Þ

γ1 ¼ σx ⊗ σx ⊗ σx, γ2 ¼ σx ⊗ σx ⊗ σz, γ3 ¼ σx ⊗ σz ⊗
σ0 and γ4 ¼ σy ⊗ σz ⊗ σy. These 8 × 8 Dirac matrices are
related to the real representation of the Clifford algebra. As
a consequence, the system is characterized by real Bloch
wave functions. However, differently from the 2D Euler
insulators, in this case SO(2) is replaced by SO(4) and we
do not have any well-defined Euler invariant to describe the
3D bulk. By employing our new theoretical framework, we
can now construct an SO(4) Cijk connection, which is
naturally associated to a non-Abelian real bundle gerbe in
the first Brillouin zone. For the fourfold degenerate lower
band E−, the corresponding Higgs field can be built from
the matrix G ¼ σ0 ⊗ σ0 ⊗ σ2 (like in the previous cases,
also this matrix is related to the 2D inversion in kx and ky)
such that the higher-tensor Berry connection is given by

Cxyz ¼
8

jEj4 ðcos ky cos kz þ cos kx cos ky þ cos kx cos kz

−m cos kx cos ky cos kzÞ: ð23Þ

This tensor field allows us to derive the topological
invariant for the 3D gapped bulk through the generalized
Berry-Zak phases

ϒCðT3Þ ¼ −8; jmj < 1;

ϒCðT3Þ ¼ 4; 1 < jmj < 3; ð24Þ

with ϒCðT 3Þ ¼ 0 for jmj > 3. As shown in Fig. 2, Cxyz has
maximum at the K points where the gap closes, i.e., at Γ
(m ¼ 1) and X (m ¼ 3) points, respectively. Since the IT
symmetry in 3D gapped phases is not related to any 3D
strong topological invariant [70], then we deduce that
ϒCðT3Þ is related to the presence of the chiral symmetry.
This model is then different from 3D weak Stiefel-Whitney
insulators [66], which do not need the S symmetry and can
be seen as stacks of 2D Euler insulators. In analogy to
conventional 3D chiral-invariant topological insulators
with even topological invariant [71] and nonsymmorphic
Dirac insulators [72], our model supports gapless boundary
states given by doubly degenerate (real) Dirac cones. In a
slab geometry, one can open a boundary gap by introducing
boundary terms that break S but preserve C2 × T (here, C2
is the inversion symmetry on the 2D boundary and is also
supported by the 3D bulk). In this way we obtain a half
Euler insulator with e1 ¼ 1. The existence of this gapped
boundary is one of the main features of the above 3D
topological phase.
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We now define a gapless IT - and S-symmetric system
in four dimensions. The existence of γ5 ¼ σz ⊗ σ0 ⊗ σ0
allows us to introduce a Dirac model for 4D Dirac
semimetals in the real representation. Formally, the linear-
ized momentum-space Hamiltonian is similar to that in
Eq. (19) and the Higgs field is built by employing the same
matrix G considered in the previous 3D case. A straightfor-
ward calculation yields

ϒCðS3Þ ¼ −4; ð25Þ

such that its absolute value provides the topological charge
of the 4D real Dirac cone. Also in this case, the chiral
symmetry protects the stability of this topological number
similarly to the case of 4D tensor monopoles [23,24,26]. In
fact, this four-dimensional phase can be seen as a stack of
the IT - and S-symmetric 3D gapped phases. Although 4D
systems cannot appear in real solid-state systems, this
higher-dimensional model could be realized in artificial
systems such as topoelectric circuits [73].
Conclusions and outlook.—Summarizing, in this work

we have presented a generalization of non-Abelian Berry
connections built from momentum-space Higgs fields that
allow us to define higher-dimensional versions of the non-
Abelian Berry-Zak phases. Through these new fields we
have shown that the topological invariants of several
2D, 3D, and 4D models such as QSH insulators, Euler
insulators, 3D and 4D Dirac semimetals can be computed
within a unified framework. Moreover, our new theoretical
concepts do not only unveil the presence of generalized
gauge-theory structures in band theory but also the exist-
ence of a new class of models characterized by IT (with
T 2 ¼ 1) and S symmetries. We have provided two explicit

models in three and four dimensions although their
generalization with higher numbers of bands and in higher
dimensions is possible. Several directions will be consid-
ered in future work. In particular, we will extend our
formalism to higher-dimensional non-Hermitian topo-
logical systems, nodal-line and nodal-surface semimetals,
higher-spin fermion models [46,74–76], and higher-order
topological phases [77]. Moreover, via a many-body
generalization of tensor gauge connections we should be
able to analyze topological phases of 3D interacting models
within our framework.

G. P. is pleased to acknowledge discussions with Nathan
Goldman, Benjamin J. Wieder, Barry Bradlyn, and Gregory
A. Fiete.

Note added.—Recently, I have been informed of Ref. [78],
which discusses a gapped 3D model similar to the one
in Eq. (22).
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