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We develop a mesoscopic lattice Boltzmann model for liquid-vapor phase transition by handling the
microscopic molecular interaction. The short-range molecular interaction is incorporated by recovering an
equation of state for dense gases, and the long-range molecular interaction is mimicked by introducing a
pairwise interaction force. Double distribution functions are employed, with the density distribution
function for the mass and momentum conservation laws and an innovative total kinetic energy distribution
function for the energy conservation law. The recovered mesomacroscopic governing equations are fully
consistent with kinetic theory, and thermodynamic consistency is naturally satisfied.
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Liquid-vapor phase transition is a widespread phenome-
non of great importance in many natural and engineering
systems. Because of its multiscale nature and macroscopic
complexity [1–6], thermodynamically consistent modeling
of liquid-vapor phase transition with the underlying physics
is a long-standing challenge, despite extensive studies.
Physically speaking, the phase transition is a natural
consequence of the molecular interaction at the micro-
scopic level. Therefore, as a mesoscopic technique that can
incorporate the underlying microscopic interaction, the
lattice Boltzmann (LB) method is advocated as a promising
method for modeling multiphase flows with phase tran-
sition [7–9].
The theory of the LB method for multiphase flows has

been extensively studied since the early 1990s [8–12].
However, most studies are inherently limited to isothermal
systems, and the theory of the LB method for liquid-vapor
phase transition remains largely unexplored. Recently,
some liquid-vapor phase transition problems have been
simulated by the LB method [13–17], where the popular
pseudopotential LB model for isothermal systems is
adopted to handle the mass and momentum conservation
laws, and a supplementary macroscopic governing equa-
tion is employed to handle the energy conservation law.
Because of the idea of mimicking the microscopic inter-
action responsible for multiphase flows, the pseudopoten-
tial LB model shows great simplicity in both concept and
computation. However, it suffers from thermodynamic
inconsistency [7], although the coexistence densities could
be numerically tuned close to the thermodynamic results.
The supplementary macroscopic energy governing equa-
tion is extremely complicated [2,18] and it is artificially
simplified with macroscopic assumptions and approxima-
tions in previous works [13–17]. Both thermodynamic
consistency and the underlying physics are sacrificed.

Moreover, the simplified energy governing equation cannot
be recovered from the mesoscopic level, implying that the
computational simplicity is also lost.
In this Letter, we first analyze the kinetic model that

combines Enskog theory for dense gases with mean-field
theory for long-range molecular interaction. Guided by this
kinetic model, we develop a novel mesoscopic LB model
for liquid-vapor phase transition by handling the under-
lying microscopic molecular interaction rather than resort-
ing to any macroscopic assumptions or approximations.
The present LB model has a clear physical picture at the
microscopic level and thus the conceptual and computa-
tional simplicity, and it is also kinetically and thermo-
dynamically consistent.
The microscopic molecular interaction responsible for

liquid-vapor phase transition generally consists of a short-
range repulsive core and a long-range attractive tail. The
short-range molecular interaction can be well modeled by
Enskog theory for dense gases, and the long-range molecu-
lar interaction can be described by mean-field theory and
thus modeled as a point force [19]. Combining Enskog
theory for dense gases with mean-field theory for
long-range molecular interaction, the kinetic equation for
the density distribution function (DF) fðx; ξ; tÞ can be
written as [7]

∂tf þ ξ ·∇f þ a ·∇ξf ¼ ΩEnskog þ∇Vmean · ∇ξf; ð1Þ

where ξ is the molecular velocity, a is the external
acceleration, and Vmean denotes the mean-field approxima-
tion of the long-range molecular potential. The Enskog
collision operator ΩEnskog is [20]
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whereΩ0 is the usual collision operator for rarefied gases, χ
is the collision probability, b ¼ 2πd3=ð3mÞ with d and m
the molecular diameter and mass, C ¼ ξ − u, and
C ¼ C=

ffiffiffiffiffiffiffiffiffi
2RT

p
. The equilibrium DF feq is

feq ¼ ρ

ð2πRTÞ3=2 exp ð−jCj2Þ: ð3Þ

The density ρ and momentum ρu are calculated as

ρ ¼
Z

fdξ; ρu ¼
Z

fξdξ: ð4Þ

Based on the density DF, a distinct internal kinetic energy
ρϵk and total kinetic energy ρek can be well defined:

ρϵk ¼
Z

f
jξ − uj2

2
dξ; ρek ¼

Z
f
jξj2
2

dξ: ð5Þ

Because of the long-range molecular interaction, the
internal potential energy, defined as ρϵp ¼ 1

2
ρVmean, should

be considered. Here, the factor 1
2
avoids counting each

interacting pair twice. Therefore, the usual internal energy
and total energy are ρϵ ¼ ρϵk þ ρϵp and ρe ¼ ρek þ ρϵp.
Through the Chapman-Enskog (CE) analysis, the following
mesomacroscopic governing equations can be derived:

∂tρþ∇ · ðρuÞ ¼ 0; ð6aÞ

∂tðρuÞþ∇ ·ðρuuÞ¼−∇pBEþFmeanþρaþ∇ ·Π; ð6bÞ

∂tðρekÞþ∇·ðρekuþpBEuÞ¼Fmean ·uþρa·uþ∇·ðJþu·ΠÞ;
ð6cÞ

where pBE ¼ ρRTð1þ bρχÞ is the equation of state (EOS)
for dense gases recovered by the Enskog collision operator,
Fmean ¼ −ρ∇Vmean is the point force for the long-range
molecular interaction, Π is the viscous stress tensor, and J
denotes the energy flux by conduction. Note that Eq. (6)
should be viewed as mesomacroscopic rather than macro-
scopic governing equations because the involved Fmean
and ρek cannot be well defined from the macroscopic
viewpoint.
Equation (6c) in terms of ρek is uncommon in previous

works. To derive the usual macroscopic energy governing
equation, the transport equation for ρϵp should be first

established. The mean-field approximation of the long-
range molecular potential is given as [19]

Vmean ¼
Z
jx2−xj>d

ρðx2ÞVðjx2 − xjÞdx2; ð7Þ

where x and x2 are the positions of two interacting
molecules, Vðjx2 − xjÞ is the distance-dependent potential.
Performing Taylor series expansion of ρðx2Þ centered at x,
Eq. (7) can be formulated as

Vmean ¼ −2aρ − κ∇ ·∇ρ; ð8Þ

where a¼ − 1
2

R
jrj>d VðjrjÞdr and κ ¼ − 1

6

R
jrj>d jrj2VðjrjÞdr.

Then, the following relation can be derived:

∂tðρϵpÞþ∇ ·ðρϵpuÞþFmean ·u

¼1

2
ρð∂tVmean−u ·∇VmeanÞ

¼−∇ · ½u ·ðP−pBEIÞ�þ∇u∶
�
−
κ

2
∇ ·ðρ∇ρÞIþκ∇ðρ∇ρÞ

�
;

ð9Þ

where I is the unit tensor, and P is the pressure tensor
defined as∇ · P ¼ ∇pBE − Fmean based onEq. (6b).Adding
ρϵp to ρek, Eq. (6c) can be rewritten in terms of ρe:

∂tðρeÞþ∇ ·ðρeuþu ·PÞ

¼ρa ·uþ∇ ·ðJþu ·ΠÞþ∇u∶
�
−
κ

2
∇ ·ðρ∇ρÞIþκ∇ðρ∇ρÞ

�
:

ð10Þ

The last term in Eq. (10) refers to the work done by surface
tension [7]. Equations (6c) and (10) are physically equiv-
alent to each other, but Eq. (6c) is much simpler than
Eq. (10). This is because ρek, as amoment of the density DF,
is more easily calculated than ρe at the mesoscopic level,
although ρe is extensively involved at themacroscopic level.
Inspired by the above analysis, we will develop a meso-
scopic LBmodel to recover Eq. (6) rather than Eq. (10), and
the key points are recovering a nonideal-gas EOS like pBE
that corresponds to the short-range molecular interaction
and mimicking the long-range molecular interaction. Note
that both the short- and long-range molecular interactions
should be included in physically modeling liquid-vapor
phase transition. Otherwise, the liquid-vapor system
will suffer from density collapse or be homogenized.
Before proceeding further, some discussion on the kinetic
model is useful. With Eq. (8), the pressure tensor can be
calculated as

P ¼
�
pEOS − κρ∇ · ∇ρ − κ

2
∇ρ ·∇ρ

�
Iþ κ∇ρ∇ρ; ð11Þ
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where pEOS ¼ pBE − aρ2 is the full EOS. Obviously, the
above P is consistent with thermodynamic theory.
The internal kinetic energy is ρϵk ¼ ρcvT according to
kinetic theory, and the total kinetic energy satisfies
ρek ¼ ρϵk þ 1

2
ρjuj2, where cv is the constant-volume

specific heat. The latent heat of vaporization is
hlv ¼ hv − hl ¼ aðρl − ρvÞ þ psðρ−1v − ρ−1l Þ, where hv
and hl are the specific enthalpies (h ¼ ϵþ pEOS=ρ) of the
saturated vapor and liquid, respectively, ρv and ρl are the
saturated vapor and liquid densities, respectively, and ps is
the saturation pressure.
Based on Eq. (6) derived from the kinetic model, we

introduce double DFs: the density DF fiðx; tÞ for the mass
and momentum conservation laws and an innovative,
simple yet effective, total kinetic energy DF giðx; tÞ for
the energy conservation law. The standard D2Q9 lattice
[21] is considered here for simplicity, and the extension to
three dimensions is straightforward. The LB equations for
fi and gi are given as

liðxþ eiδt; tþ δtÞ ¼ l̄iðx; tÞ; ð12aÞ

m̄ ¼ mþ δtFm − S

�
m −meq þ δt

2
Fm

�
þ SQm; ð12bÞ

n̄¼nþδtqm−L

�
n−neqþδt

2
qm

�
þc2Y

�
mþm̄

2
−meq

�
;

ð12cÞ

where Eq. (12a) is the linear streaming process in velocity
space with li denoting fi or gi and the overbar denoting the
post-collision state, Eqs. (12b) and (12c) are the local
collision processes in moment space computed at
position x and time t with the moments m ¼ MðfiÞT
and n ¼ MðgiÞT, and c ¼ δx=δt is the lattice speed. The
post-collision DFs are obtained via ðf̄iÞT ¼ M−1m̄ and
ðḡiÞT ¼ M−1n̄. Here, M is the orthogonal transformation
matrix [22]. A pairwise interaction force is introduced to
mimic the long-range molecular interaction, which is given
as [23]

Fpair ¼ G2ρðxÞ
X
i

ωðjeiδtj2Þρðxþ eiδtÞeiδt; ð13Þ

where G2 controls the interaction strength, ωðδ2xÞ ¼ 1
3
and

ωð2δ2xÞ ¼ 1
12

maximize the isotropy degree of Fpair. The
density ρ, momentum ρu, and total kinetic energy ρek are
calculated as

ρ ¼
X
i

fi; ρu ¼
X
i

eifi þ
δt
2
F; ρek ¼

X
i

gi þ
δt
2
q:

ð14Þ

Here, F ¼ Fpair þ ρa is the total force, and q ¼ Fpair · uþ
ρa · u is the total work done by force. Note that ðδt=2ÞF
and ðδt=2Þq in Eq. (14) are necessary to avoid the discrete
lattice effect.
The technical details of the present mesoscopic LB

model (including the equilibrium moments meq and neq,
the collision matrices S and L, the discrete force Fm, the
discrete source qm, etc.) are given in Supplemental Material
[24]. Performing the second- and third-order CE analyses
for the above LB model, the mesomacroscopic governing
equations from the kinetic model [i.e., Eq. (6)] can be
recovered once we set

pBE ¼ pLBE; Fmean ¼ Fpair þRiso þRadd;

ρhk ¼ ρek þ pBE; ð15Þ

where pLBE ¼ c2sðρþ ηÞ is the recovered EOS for dense
gases with η a built-in variable in meq, Riso ¼ 1

12
δ2x∇ ·

∇Fpair and Radd ¼ −ðG2δ4x=24Þ∇ · ½2∇ρ∇ρþ ð∇ρ · ∇ρÞI�
are the third-order terms by the third-order discrete
lattice effect and by the compensation term SQm in
Eq. (12b), respectively, and ρhk is the total kinetic enthalpy
in neq. The recovered viscous stress tensor and energy flux
are given as Π¼ρν½∇uþð∇uÞT−ð∇·uÞI�þρςð∇·uÞI and
J ¼ λ∇T, respectively, with the kinematic viscosity
ν¼ c2sδtðs−1p − 1

2
Þ, the bulk viscosity ς¼ϖc2sδtðs−1e − 1

2
Þ,

and the heat conductivity λ ¼ ½ð4þ 3γ1 þ 2γ2Þ=6�×
Crefc2δtðσ−1j − 1

2
Þ. Here, ϖ and γ1;2 are model coefficients,

se;p and σj are relaxation parameters, Cref is the reference

volumetric heat capacity [24], and cs ¼ c=
ffiffiffi
3

p
is the lattice

sound speed. Based on Eq. (15), the pressure tensor given
by Eq. (11) can be derived, and there have

a ¼ G2δ2x
2

; κ ¼ G2δ4x
4

: ð16Þ

Therefore, thermodynamic consistency naturally emerges
from our mesoscopic LB model developed in accordance
with the kinetic model. Note that there exist some addi-
tional cubic terms of velocity in recovering the viscous
stress tensor [27,28], which are ignored with the low Mach
number condition and can also be eliminated by trivial
modifications [23,29]. Moreover, the present LB model
shows satisfactory numerical stability due to the separate
incorporations of the short- and long-range molecular
interactions and the introduction of an innovative, simple
yet effective, total kinetic energy DF.
In this work, the following full EOS combining the

Carnahan-Starling expression for hard spheres [30] with an
attractive term is specified:

pEOS ¼ KEOS

�
ρRT

1þ ϑþ ϑ2 − ϑ3

ð1 − ϑÞ3 − ãρ2
�
; ð17Þ
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where ϑ ¼ b̃ρ=4, ã ¼ 0.4963880577294099R2T2
cr=pcr,

and b̃ ¼ 0.1872945669467330RTcr=pcr. Here, Tcr and
pcr are the critical temperature and pressure, respectively.
The interaction strength is set to

G ¼ KINT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KEOSã=δ2x

q
; ð18Þ

and the lattice sound speed is chosen as

cs ¼ KINT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�∂pEOS

∂ρ
�

T
þ 2KEOSãρ

s 				
ρ¼ρl

: ð19Þ

Note that the scaling factors KEOS and KINT are introduced
to adjust the surface tension σ ∝ KEOSKINT and interface
thickness W ∝ KINT.
To test the applicability of our mesoscopic LB model for

liquid-vapor phase transition, we perform simulations with
ϖ ¼ 1=6, γ1 ¼ −2, γ2 ¼ 2, ã ¼ 1, b̃ ¼ 4, R ¼ 1, and
δx ¼ 1. The reduced temperature (Tr ¼ T=Tcr) is set to
Tr;0 ¼ 0.8, and the surface tension σ ¼ 0.01 and interface
thickness W ¼ 10, which indicate that KEOS ¼ 0.479820
and KINT ¼ 2.294922. The kinematic viscosities and heat
conductivities of the liquid and vapor satisfy νl ¼ νv and
λl ¼ 10λv, respectively. A higher temperature Tr;1 ¼ 0.85,
together with the outflow and constant-pressure condition,
is applied to drive the phase transition. This boundary
condition is treated by the improved nonequilibrium-
extrapolation scheme [31]. Meanwhile, eliminating the
additional cubic terms of velocity is also plugged into
the LB model [29]. Before simulating liquid-vapor phase
transition, an equilibrium droplet in periodic domain is
considered. The numerical results of σ andW, measured by
Laplace’s law and circular fitting, are 0.0101676 and
9.961104, respectively. Such good agreements with the
prescribed values validate the present LB model.
Subsequently, the one-dimensional Stefan problem is
simulated on a 1024δx × 4δx domain heated from the left
side. Neglecting convection and taking the sharp-interface
limit, the analytical location of liquid-vapor phase interface
can be obtained [32]:

XiðtÞ ¼ 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αvðtþ t0Þ

p
; ð20Þ

where αv ¼ λv=ðρvcvÞ, t0 shifts the initial location, and k is
the root of the transcendental equation

Ste
expðk2ÞerfðkÞ ¼ k

ffiffiffi
π

p
; ð21Þ

where the Stefan number is defined as Ste ¼
ρvcvTcrðTr;1 − Tr;0Þ=ðρlhlvÞ and set to Ste ¼ 0.005 to
ensure that convection can be neglected. The numerical
results are shown in Fig. 1. It can be seen that liquid-vapor
phase transition is successfully and accurately captured by

the present LB model. The vapor slowly flows to the left
with its temperature gradually rising from Tr;0 to Tr;1, while
the liquid stays at rest with a uniform temperature Tr;0.
Across the phase interface, the density profile can be well
maintained, and the pressures in vapor and liquid balance
each other (the jumps of pEOS within the phase interface
come from the nonmonotonic EOS for liquid-vapor fluids).
Moreover, the location of phase interface agrees very well
with the analytical result, which suggests that the latent heat
of vaporization in the mesoscopic LB model is naturally
consistent with thermodynamic theory.
A liquid droplet with diameter D0 ¼ 256δx is then

simulated on a 1024δx × 1024δx domain heated from all
the four sides. The Stefan number is set to Ste ¼ 0.005 and
thus convection in the evaporation is quite weak. Figure 2
shows the time evolution of the square of the normalized
diameter ðD=D0Þ2, together with four snapshots of the local
density and temperature fields. Here, the time is normalized
as t� ¼ αvt=D2

0. The well-known D2 law [33,34] can be
perfectly observed during the entire droplet lifetime, and
both the interface thickness and droplet temperature can be
well maintained at the prescribed values. As a further
application, the evaporation of a large-small droplet pair is
simulated with Ste ¼ 0.005, 0.05, and 0.5, respectively.
Initially, the diameters of the two droplets are 160δx and
96δx, respectively, and the distance between the droplet
centers is 256δx. Figure 3 shows the snapshots of the local
temperature and velocity fields, and the time evolution of

(a) (b)

(c) (d)

(e)

FIG. 1. Distributions of (a) density ρ, (b) velocity ux, (c) temper-
ature Tr, and (d) pressure pEOS at time t ¼ 0.401 × 107,
0.803 × 107, 1.204 × 107, and 1.606 × 107, and (e) time evolu-
tion of the phase interface location Xi for the one-dimensional
Stefan problem.
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the normalized volume V=V0. Here, V is the total volume
of the droplets, V0 ¼ πD2

0=4, and D0 ¼ 128δx. For
Ste ¼ 0.005, the evaporation is quite slow, and the two
droplets attract each other and coalesce into a single one.
This attraction-coalescence behavior is due to the nonuni-
form evaporation rate along droplet surface, which is
induced by the other droplet and will result in an imbal-
anced vapor recoil force [6]. Such unusual behavior of
evaporating droplets under slow evaporation condition is
consistent with the recent experimental and theoretical
results [35,36]. Interestingly, the local temperature slightly
rises [see the middle panel in Fig. 3(a)] and the normalized
volume slightly increases [see the “kink” in Fig. 3(d)] when
the coalescence occurs, which can be explained as follows:
At the neck formed by coalescence, the phase interface
changes from convex to concave, and the local saturated
vapor pressure will decrease according to the Kelvin
equation in thermodynamic theory [19]. Therefore, the
vapor nearby the neck becomes supersaturated and then
condenses into liquid, resulting in the release of latent heat
and also the increase of droplet volume. Here, it is note-
worthy that the above condensation at the neck between
two merging droplets is a kind of capillary condensation in
thermodynamic theory [37,38]. For Ste ¼ 0.05 and 0.5,
evaporation becomes much faster and convection is very
strong. The two droplets repulse each other rather than
attract, and the droplet lifetime is much shorter than that for
Ste ¼ 0.005. As seen in Figs. 3(b) and 3(c), the vapor
outflows originating from the droplet surfaces impact each
other in the middle region between the two droplets, and
thus the pressure in this region obviously increases, which
then pushes the two droplets away from each other against
the imbalanced vapor recoil force.
In summary, we have developed a novel mesoscopic LB

model for liquid-vapor phase transition, where the short- and
long-range molecular interactions are incorporated by

recovering an EOS for dense gases and introducing a
pairwise interaction force, respectively, and an innovative,
simple yet effective, total kinetic energy DF is proposed for
the energy conservation law. The same mesomacroscopic
governing equations as the kinetic model can be recovered,
and thus thermodynamic consistency is naturally satisfied.
Because of the successful modeling of the underlying
microscopic molecular interaction, the present mesoscopic
LB model does not rely on any macroscopic assumptions or
approximations and has the potential to provide reliable
physical insights into the liquid-vapor phase transition
processes.
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