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We predict a new type of two- and three-dimensional stable quantum droplets persistently rotating in
broad external two-dimensional and weakly anharmonic potential. Their evolution is described by the
system of the Gross-Pitaevskii equations with Lee-Huang-Yang quantum corrections. Such droplets
resemble whispering-gallery modes localized in the polar direction due to nonlinear interactions and,
depending on their chemical potential and rotation frequency, they appear in rich variety of shapes, ranging
from nearly flat-top or strongly localized rotating wave packets, to crescentlike objects extending nearly
over the entire range of polar angles. Above critical rotation frequency quantum droplets transform into
vortex droplets (in two dimensions) or vortex tori (in three dimensions), whose topological charge
gradually increase with the increase of the modulus of chemical potential, and therefore they belong to the
family of nonlinear modes connecting fundamental and vortex quantum droplets. Rotating quantum
droplets are exceptionally robust objects, stable practically in the entire range of their existence.
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Formation of multidimensional nonlinear localized
waves is a problem of fundamental importance in diverse
areas of physics. Various mechanisms supporting the
formation of such states are known [1–4]. Quantum
droplets, created in Bose-Einstein condensates (BECs),
represent an intriguing example of self-sustained states,
which can be stable in both two- and three-dimensional
geometries. They are stabilized by the Lee-Huang-Yang
(LHY) correction to the mean-field energy, induced by
quantum fluctuations [5]. The possibility of suppression of
collapse for Bose-Bose mixtures due to repulsive LHY
correction was considered in Refs. [6,7], where stationary
quantum droplets, filled by a nearly incompressible quan-
tum liquid, were predicted. In binary mixtures [6,7]
stabilization is possible when inter- and intraspecies inter-
actions become nearly equal in magnitude, but opposite in
sign, so that remaining small imbalance in favor of
interspecies attraction may be counteracted by the com-
peting LHY correction. Quantum droplets also exist in a
single-component gas of dipolar atoms with long-range
attractive interactions [8–16]. Creation of quantum droplets
was reported in nearly 2D [17,18] and 3D [19,20] con-
figurations using a mixture of two different atomic states
in 39K or attractive heteronuclear mixture of 41K and 87Rb
atoms [21]. Such states exist also in the 1D geometry
[7,22–24]. Droplets in two-component dipolar BECs are
also under active investigation [25,26]. Dipolar conden-
sates were used to demonstrate supersolidlike behavior
of quantum droplets [27–32]. Spin-orbit coupling
substantially enriches the physics of formation of quantum
droplets [33–36].

LHY correction may also stabilize excited multidimen-
sional states. Their properties depend on the dimensionality
of the problem, since the form of the LHY correction
changes upon reduction of the dimensionality. Among
stable excited states, predicted so far, are 2D [37] and
3D [38] vortex quantum droplets. Their counterparts in
dipolar condensates turn out to be unstable [39]. Vortices
can be nested in arrays of quantum droplets in periodic
potentials [40,41]. Stable droplets in binary mixtures may
have different density profiles or vorticities in two compo-
nents [37,42,43]. Quantum droplets in external potentials
may aggregate into crystals [14] or vortex arrays [44] (akin
to vortex lattices in repulsive condensates [45,46]), and
form metastable clusters in free space [47]. The transition
from the superfluid to the supersolid phases and to droplet
crystals in rotating dipolar condensates in axially deformed
traps was reported in Ref. [48]. Recent progress in this field
is described in Ref. [49].
While the formation of various excited droplet configu-

rations was predicted, there are no evidences that single
quantum droplets can exist as stable objects performing
persistent rotary motion in broad external potentials. The
goal of this Letter is to introduce such rotating droplets
in both 2D and 3D settings and to show that they can be
stable. Rotating quantum droplets can be considered as
whispering-gallery modes, confined in the polar direction
by the nonlinear interactions. They represent a new family
of localized nonlinear states, parametrized by the rotation
frequency that connects nonrotating fundamental and
vortex droplets. They resemble azimuthons [50–53], but
differ from them, since azimuthons bifurcate from
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antisymmetric dipole modes, while our single-spot states
are strongly asymmetric.
We start our analysis from the 2D geometry, where the

evolution of two components of binary BEC in broad
external potential is described by coupled Gross-Pitaevskii
equations [6,7] for dimensionless wave functions
ψ1;2ðx; y; tÞ (for details of normalization see Ref. [54]).
We assume identical shapes of components ψ1 ¼ ψ2 ¼ ψ
and identical intraspecies interactions that allow us to
reduce the full binary system to the equation

i
∂ψ
∂t ¼ − 1

2
Δ2Dψ þ 2σjψ j2ψ lnð2jψ j2Þ þ Vψ : ð1Þ

Here, Δ2D ¼ ∂2=∂x2 þ ∂2=∂y2, σ is the strength of
the logarithmic LHY contribution to nonlinearity, while
difference cubic nonlinearity vanishes for ψ1 ¼ ψ2 ¼ ψ.
Potential V ¼ ð−αr2 þ βr4Þ=2, where r is the radial
coordinate in the (x, y) plane, is anharmonic with
α ¼ 10−2, β ¼ 10−4. Its role consists in the creation of a
shallow radial minimum that stimulates the formation
of whispering-gallery modes, while LHY correction is
responsible for stabilization of 2D states. Equation (1)
conserves the total norm N ¼ 2

RR jψ j2d2r and energy
E ¼ RRfj∇ψ j2 þ 2σjψ j4 ln½2e−1=2jψ j2� þ 2Vjψ j2gd2r. To
find persistently rotating quantum droplets we use coor-
dinate frame x0 ¼ x cosðωtÞ þ y sinðωtÞ, y0 ¼ y cosðωtÞ −
x sinðωtÞ that rotates with frequency ω, where Eqs. (1)
acquire the following form:

i
∂ψ
∂t ¼ − 1

2
Δ2Dψ þ iω

�

x
∂ψ
∂y − y

∂ψ
∂x

�

þ 2σjψ j2ψ lnð2jψ j2Þ þ Vψ : ð2Þ

We omitted primes in coordinates in Eq. (2) and set σ ¼ 1.
The second term in the right-hand side of Eq. (2) accounts
for the Coriolis force that can be counterbalanced by external
potential V. Equating the potential force, −dV=dr, to the
centripetal force −ω2r, which supports circular motion with
frequency ω, one obtains rough estimate for the droplet
rotation radius, r ¼ ½ðαþ ω2Þ=2β�1=2.
Persistently rotating droplets can be found in the form

ψ ¼ wðx; yÞe−iμt, where w is the complex-valued function
and μ is the chemical potential, when dispersion is arrested
by the logarithmic nonlinearity (switching from self-
attraction to repulsion with the increase of the density).
The profiles of such droplets are shown in Fig. 1. Rotating
quantum droplets are strongly asymmetric states, which
always feature only one density maximum. Their phase is
trivial at ω ¼ 0, but it acquires complex structure with
multiple nested phase singularities, when rotation fre-
quency increases. With an increase of the ω phase singu-
larities come from transverse infinity and gradually
approach the r ¼ 0 point, around which the droplet rotates

[Figs. 1(a)–1(c)]. The number of singularities generally
increases with increase of jμj. This process is accompanied
by gradual expansion of the droplet in the polar direction,
so that it acquires a pronounced crescentlike shape. At
critical rotation frequency ω ¼ ωm droplets become radi-
ally symmetric, while all phase singularities merge into a
central one with topological charge m (see insets in Fig. 1).
Therefore, the family of rotating droplets, parametrized
by ω, connects families of asymmetric fundamental and
radially symmetric vortex states. Rotating droplets appear
in a variety of shapes ranging from crescentlike states
[Fig. 1(a)], to well-localized spots [Fig. 1(b)], and flat-top
modes [Fig. 1(c)]. In external potential V flat-top shapes
emerge at μcr ≈ μu þ μ0, where μu ¼ e−1=2 ln e−1=2 is the
critical value of the chemical potential in the uniform
medium, at which droplets would acquire nearly constant
density ρ ¼ e−1=2, and μ0 ≈ −0.0648 is the eigenvalue of
the fundamental linear mode of potential V with topologi-
cal charge m ¼ 0. Notice that with increase of ω such flat-
top droplets first exhibit strong contraction and then acquire
crescentlike shapes [Fig. 1(c)].

FIG. 1. Rotating quantum droplets for various ω at μ ¼ −0.09
(a), μ ¼ −0.18 (b), and μ ¼ −0.35 (c). Modulus of two identical
components jψ1j ¼ jψ2j ¼ jψ j and phase distributions (insets)
are shown within x; y ∈ ½−18;þ18� windows. White circles
indicate the potential minimum. (d) Stable rotation of quantum
droplet with ω ¼ 0.04, μ ¼ −0.18.
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The dependencies of norm N of 2D droplets on μ and ω
are presented by solid lines in Figs. 2(a), 2(b) and
Figs. 2(c), 2(d), respectively. For comparison, on the same
plots we present also dependencies obtained for radially
symmetric vortex modes ψ ¼ wðrÞeimϕ−iμt (here m is the
topological charge) of Eq. (2) that coexist with rotating
droplets (see dashed lines). One can see that with a decrease
of jμj or with increase of ω the family of asymmetric
rotating droplets joins, at nonzero norm N, with radially
symmetric family with certain topological charge m.
The latter family, in turn, emerges under the action of
nonlinearity from one of the linear eigenmodes of the
potential V. The topological charge of radially symmetric
family, from which rotating droplets bifurcate upon varia-
tion of ω [Fig. 2(c)], systematically increases with increase
of jμj. This can be understood from Eq. (2), written in polar
coordinates (r, ϕ):

i
∂ψ
∂t − iω

∂ψ
∂ϕ ¼ − 1

2

�∂2ψ

∂r2 þ 1

r
∂ψ
∂r þ 1

r2
∂2ψ

∂ϕ2

�

þ 2σjψ j2ψ lnð2jψ j2Þ þ Vψ : ð3Þ

Substituting ψ ¼ wðrÞeimϕ−iμt into it shows that rotation
has the only effect on radial solutions consisting in

modification of chemical potential μ → μþmω, which
for m, ω > 0 is equivalent to a simple shift of correspond-
ingNðμÞ dependence bymω in the negative direction of the
μ axis. At the same time, radial families associated with
increasing topological charges m bifurcate from linear
modes of the anharmonic potential V at gradually incre-
asing cutoff values μm¼0 ≈ −0.0648, μm¼1 ≈ −0.0445,
μm¼2 ≈ −0.0049, μm¼3 ≈ 0.0481, etc. With an increase
of rotation frequency ω, these families start to “override”
each other in the negative μ direction due to the above-
mentioned shift of the chemical potential ∼mω. Because
cutoff values μm increase withm, the larger is the chargem;
the larger frequency ω is needed for a given family to
override the families with lower topological charges. We
found that the family NðμÞ of asymmetric rotating droplets
joins (bifurcates) with that family of radially symmetric
states, which was “met” first upon decrease of jμj [see
Figs. 2(a), 2(b)] and for larger rotation frequency ω this
will be the family with larger topological charge m. This
explains the phase structure of rotating droplets from
Figs. 1(a)–1(c) around the ω ¼ ωm value, where they
transform into vortex states.
These observations are summarized in Fig. 3(a) in the

form of the dependence of the maximal rotation frequency
ωm on chemical potential μ. Rotating 2D droplets exist
for all frequencies below ωm. At the upper edge of the
existence domain in ω they transform into vortices whose
topological charge grows by 1 between domains shown
by the dots of different colors starting from m ¼ 0 at
μ ∼ −0.0648 up to m ¼ 9 at μ ∼ −0.355 (i.e., when one
moves from right to the left). With further increase of jμj
maximal frequency ωm suddenly drops down and the
existence domain shrinks. This is connected with qualita-
tive modification of the NðωÞ dependence for nearly flat-
top states [Fig. 2(d)]. To analyze stability of 2D droplets
we substituted perturbed profiles ψ1;2 ¼ ðw1;2 þ u1;2eδt þ
v∗1;2eδ

∗tÞe−iμt, where u1;2, v1;2 ≪ w1;2, into Eq. (1),

FIG. 2. (a) N versus μ for 2D rotating droplets and radially
symmetric state with m ¼ 0 at ω ¼ 0.01. Labels a and solid lines
correspond to asymmetric rotating states, while labels s and
dashed lines correspond to radially symmetric states. (b)N versus
μ for rotating droplet and radially symmetric state with m ¼ 3 at
ω ¼ 0.06. (c) N versus rotation frequency ω at different μ values.
Radial modes from which bifurcation occurs carry chargesm ¼ 2
ðμ ¼ −0.09Þ and m ¼ 5 (μ ¼ −0.18). (d) N versus ω for nearly
flat-top 2D droplets (μ decreases along the arrow from −0.35 to
−0.36 in steps of δμ ¼ 0.002).

FIG. 3. Existence domains of the rotating 2D (a) and 3D
(b) droplets on the (μ, ω) plane. Domains on the upper edge,
where topological charge increases by 1 with an increase of jμj
are marked by the dots of a different color (for 2D states the
charge at ω ¼ ωm increases from m ¼ 0 at μ ∼ −0.0648 up to
m ¼ 9 at μ ∼ −0.355, while for 3D states it increases up tom ¼ 4
at μ ∼ −0.238). Droplets are unstable below red solid curves and
are stable above them.
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linearized it, and solved the resulting eigenvalue problem
numerically to obtain the dependence of the perturbation
growth rate δ on μ, ω. Only one narrow instability domain
was detected, which is located below the red solid curve
in Fig. 3(a). In the largest part of their existence domain
rotating droplets are completely stable. The example of
stable rotation is presented in Fig. 1(d) (only one rotation
period is shown, but the dynamics remains periodic over
huge times t).
Rotating asymmetric droplets can be encountered

also in a 3D binary condensate, where their evolution
for ψ1 ¼ ψ2 ¼ ψ is governed by

i
∂ψ
∂t ¼−1

2
Δ3Dψþ½ð1−gÞjψ j2þgLHYjψ j3�ψþVψ ; ð4Þ

where the LHY correction ∼gLHY, whose form depends
on dimensionality, now leads to additional quartic self-
repulsion, g is the strength of the interspecies attraction,
the strength of intraspecies repulsion is normalized to 1,
Δ3D ¼ ∂2=∂x2 þ ∂2=∂y2 þ ∂2=∂z2, and the potential
V ¼ ð−αr2 þ βr4Þ=2 is identical to the one used in the
2D case. To obtain rotating quantum droplets we move
into the rotating with frequency ω [in the (x, y) plane]
coordinate frame, and search there for stationary solutions
of the form ψ1;2 ¼ ψ ¼ wðx; y; zÞe−iμt using the Newton
conjugate-gradients method. Because potential acts only in
the (x, y) plane, such states are localized in the z direction
only due to interparticle interactions. Typical dependencies
of the norm N ¼ 2

RRR jψ j2d3r of such states on chemical
potential μ and rotation frequency ω are depicted in
Figs. 4(a) and 4(b), respectively. As in the 2D case, families
of asymmetric rotating droplets bifurcate from (join with)
the families of radially symmetric states of the form
wðr; zÞeimϕ−iμt. In the bifurcation point asymmetric 3D
droplets may transform into vortex tori, i.e., localized states

carrying vorticity in the (x, y) plane, with bell-shaped
density distributions in the z direction (in which they
considerably expand at low values of the norm). 3D
rotating droplets become nearly radially symmetric also
in the flat-top regime, at very large N values.
Representative shapes of the 3D asymmetric rotating

droplets are presented in Fig. 5 in the form of isosurface
plots. We show the state with nearly flat-top shape and large
norm [Fig. 5(a)] and well-localized states with smaller
norms [Figs. 5(b), 5(c)]. The tendency for transformation
into crescentlike [in the (x, y) plane] modes and sub-
sequently into vortex tori with increase of the rotation
frequency ω is illustrated in Figs. 5(b), 5(c). Their phase
distributions show the appearance of vortex lines moving to
the origin in the (x, y) plane with increase of the rotation
frequency. In Fig. 3(b) we show the domain of existence of
3D rotating droplets on the (μ, ω) plane. It is substantially
narrower (in μ) than the analogous domain for 2D droplets
[cf. Fig. 3(a)]. We were able to achieve the transformation
of 3D rotating droplets (at ω ¼ ωm) into vortex tori with
topological charges up to m ¼ 4. This charge increases
when one moves along the upper border of the existence
domain in Fig. 3(b) from the right to the left, as in the
2D case.
Direct modeling of the evolution of 3D rotating droplets,

slightly perturbed by input random noise, in the frames of

FIG. 4. (a) Norm N versus μ for 3D rotating droplets (ω ¼ 0—
solid black curve, ω ¼ 0.02—solid red curve) and radially
symmetric state with m ¼ 0 (dashed curve). (b) N versus ω
for rotating droplets (solid curves) and radially symmetric states
(dashed curves) for various μ. Radially symmetric states,
from which bifurcation occurs, carry topological charges
m ¼ 3 (μ ¼ −0.14) and m ¼ 4 (μ ¼ −0.23). Here and below
gLHY ¼ 0.5, g ¼ 1.75.

FIG. 5. Isosurface jψ j plots illustrating profiles of the 3D
rotating droplets at (a) μ ¼ −0.238, (b) μ ¼ −0.140, and
(c) μ ¼ −0.088 for different ω. Isosurface levels in (a),(c) are
0.10ψmax, 0.55ψmax, 0.95ψmax, while in (b) they are 0.23ψmax,
0.55ψmax, 0.95ψmax, where ψmax ¼ max jψ j for a given set of μ, ω
parameters.
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Eq. (4) has shown that they are stable in the largest part of
their existence domain. Only two narrow instability islands
on the (μ, ω) plane were detected which are located below
the red solid curve in Fig. 3(b). Importantly, this implies
that rotating states close to vortex tori with topological
charges 3 and 4 can be stable too (in free space only
vortex tori with topological charges up to m ¼ 2 were
encountered [38]). Figure 6 illustrates examples of the
unstable [Fig. 6(a)] and stable [Figs. 6(b), 6(c)] evolution
of initially perturbed droplets (notice small-scale noise
added into wave functions at t ¼ 0). The unstable droplets
exhibit long-living vibrations but do not collapse. In
contrast, stable droplets show persistent rotation over very
long times.
In a potential experiment the droplet may be initially

prepared (using standard technique [17,19] based on tuning
scattering lengths in the external magnetic field) in combi-
nation of two 2D traps: a weak anharmonic trap, where the
droplet would rotate, and a displaced tighter trap initially
holding the droplet around the minimum of the weak
anharmonic trap (a similar approach has been used in
Ref. [20]). Removal of the tighter trap and subsequent
phase imprinting using an external vortical beam [55–57],
will create droplet rotating in a weak anharmonic trap.
Alternatively, a droplet can be kicked tangentially by an
oblique beam. Rotating droplets do not require a flat-top

regime for their stable evolution (they remain stable at
sufficiently low norm values) and therefore they can be
created in similar parameter range as states reported in
Refs. [17,19]. We use normalized equations, where the
scaled coordinates are ðx; y; zÞ ¼ ðXr−10 ; Yr−10 ; Zr−10 Þ, r0 is
the characteristic spatial scale defining characteristic
energy ε0¼ℏ2=mr20 and time t0¼ℏε−10 scales (t ¼ Tt−10 ),
m is the atomic mass, nonlinear coefficients g ¼ jgxjg−1s
and gLHY¼4ε1=20 ð2mÞ3=2=3π2ℏ3, where gs¼4πℏ2a11=m¼
4πℏ2a22=m>0 and gx ¼ 4πℏ2a12=m < 0 are the coupling
constants characterizing intracomponent repulsion and
intercomponent attraction, a11, a22, a12 are scattering
lengths, the wave function is scaled as ðgs=ε0Þ1=2Ψ ¼ ψ ,
the parameters of the external potential V are α ¼
mω2r20=ε0 and β ¼ λmω2r40=ε0d

2, where ω is the trapping
frequency, d ¼ ðℏ=mωÞ1=2 is the oscillator length, and λ is
the small anharmonicity parameter (for details see
Ref. [54]). Dimensionless norm N is related to a number
of atoms N in the condensate as N ¼ ðε0r30=gsÞN.
Summarizing, we introduced a new type of the rotating

quantum droplets in both 2D and 3D systems that connect
the families of fundamental and vortex droplets. They
demonstrate remarkable stability and appear in a variety of
shapes. Such multidimensional states can be potentially
encountered in other areas, including nonlinear optics, not
only in conservative, but also in dissipative systems.
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