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Recently, spatiotemporal optical vortex pulses carrying a purely transverse intrinsic orbital angular
momentum were generated experimentally [Optica 6, 1547 (2019); Nat. Photonics 14, 350 (2020)].
However, an accurate theoretical analysis of such states and their angular-momentum properties remains
elusive. Here, we provide such analysis, including scalar and vector spatiotemporal Bessel-type solutions
as well as description of their propagational, polarization, and angular-momentum properties. Most
importantly, we calculate both local densities and integral values of the spin and orbital angular momenta,
and predict observable spin-orbit interaction phenomena related to the coupling between the transverse spin
and orbital angular momentum. Our analysis is readily extended to spatiotemporal vortex pulses of other
natures (e.g., acoustic).
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Introduction.—Vortex beams carrying intrinsic orbital
angular momentum (OAM) are widely studied and explo-
ited in modern optics [1–7], acoustics [8–13], and electron
microscopy [14–20]. They have found numerous applica-
tions in a variety of classical and quantum systems. Such
beams are monochromatic, and their intrinsic OAM is
produced by a screw phase dislocation (vortex) aligned
with the beam axis [21,22]. Thus, this OAM is longitudinal,
i.e., aligned with the mean momentum of the beam.
Recently, spatiotemporal analogs of vortex beams, spa-

tiotemporal vortex pulses (STVPs), were predicted theo-
retically [23–25] and generated experimentally in optics
[26–30]. Such states are essentially polychromatic, and
they carry intrinsic OAM transverse (or, generally, tilted)
with respect to the propagation direction of the pulse. This
OAM is produced by an edge (or mixed edge-screw) phase
dislocation [21,22]. It is anticipated that the STVPs and
transverse intrinsic OAM can considerably extend func-
tionality and applications of wave vortices. In particular,
while monochromatic vortex beams are essentially 3D
objects, STVPs can exist in 2D spatial geometry. In
addition, they can produce temporal analogs of spatial
phenomena known for monochromatic vortex beams (e.g.,
time delays instead of beam shifts).
Despite the very recent progress in the generation of

STVPs [27–30], they still lack an accurate theoretical
description, including consistent analysis of their angu-
lar-momentum and polarization properties. Indeed, despite
numerous mentions of the OAM in Refs. [27–30], its value
has not been obtained there. Instead, the topological
number of the phase dislocation l was used, which
generically does not coincide with the normalized OAM
value [2,31]. Furthermore, accurate calculations of the
OAM are impossible without a full-vector description
and separation of the spin and orbital parts of the total
angular momentum [7,32–34].

In this Letter, we fill this gap by constructing simple
Bessel-type solutions for STVPs. We describe their prop-
agational dynamics including “temporal diffraction”
[25,27], examine polarization properties, and calculate
both local densities and integral values of the OAM and
spin angular momentum (SAM) of such pulses. We show
that the in-plane linear polarization inevitably produces a
longitudinal field component and a nonzero transverse
SAM density. This induces the spin-orbit interaction
effects, known for monochromatic beams [32,35], such
as observable polarization-dependent intensity distributions
of STVPs. Importantly, an integral value of the transverse
SAM vanishes, while the integral OAM is quantized as ℏl
per photon only for circularly symmetric pulses with equal
width and length. For elliptical STVPs with different width
and length, which were used in experiments [27–30], the
OAM value is larger than ℏl per photon.
Thus, our work provides the self-consistent full-vector

description of optical STVPs. It also allows straightforward
extension to analogous acoustic pulses.
Scalar Bessel-type solutions.—We first consider scalar

waves and simplest analytical vortex-beam solutions:
Bessel beams [32,36–40]. Monochromatic Bessel beams
propagating along the z axis can be constructed as a
superposition of plane waves with the same frequency
ω ¼ ω0, wave vectors k distributed within a cone of polar
angle θ ¼ θ0, and with an azimuthal phase difference lϕ (ϕ
is the azimuthal angle in k space) corresponding to a vortex
of integer order l, Fig. 1(a). In other words, the wave
vectors form a circle in the kz ¼ kk plane, with the center
at ð0; 0; kkÞ and radius k⊥, where kk ¼ k0 cos θ0, k⊥ ¼
k0 sin θ0, k0 ¼ ω0=c, and c is the speed of light. In real
space, this superposition results in the scalar wave function
ψðr; tÞ ∝ Jlðk⊥rÞ expðikkzþ ilφ − iω0tÞ, where ðr;φÞ
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are the polar coordinates in the ðx; yÞ plane and Jn is the
Bessel function of the first kind. The transverse intensity
and phase distributions of such Bessel beam are shown in
Fig. 1(a).
To construct a Bessel-type STVP with a purely trans-

verse intrinsic OAM, we use a superposition of plane waves
with wave vectors distributed over a circle in the ky ¼ 0
plane with the center at ð0; 0; k0Þ and radius Δk, Fig. 1(b).
Using the azimuthal angle ϕ̃ with respect to the center of
this circle, we introduce the azimuthal phase difference lϕ̃
and write the real-space wave function as a Fourier-type
integral:

ψðr; tÞ ∝
Z

2π

0

ei½k0zþΔk cos ϕ̃ zþΔk sin ϕ̃ xþlϕ̃−ωðϕ̃Þt�dϕ̃; ð1Þ

where ωðϕ̃Þ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ Δk2 þ 2k0Δk cos ϕ̃

q
. Parameter Δk

determines the degree of paraxiality and monochromaticity
of the Bessel STVP. The maximum polar angle of the wave
vectors in its spectrum is sin θ0 ¼ Δk=k0, Fig. 1(b). For
Δk ≪ k0, θ0 ≪ 1, the pulse can be considered as near-
paraxial and quasimonochromatic. Below, we will use this
approximation keeping terms linear in θ0, which describe
some postparaxial phenomena.
In this approximation, ωðϕ̃Þ ≃ cðk0 þ Δk cos ϕ̃Þ, and the

integral (1) results in the analytical Bessel-pulse solution:

ψðr; tÞ ∝ Jlðρ̃Þ expðik0ζ þ ilφ̃Þ: ð2Þ

Here, ζ ¼ z − ct ¼ r̃ cos φ̃, ρ̃ ¼ Δkr̃, and ðr̃; φ̃Þ are the
polar coordinates in the ðζ; xÞ plane. The intensity I ¼ jψ j2
and phase ArgðψÞ distributions for the Bessel STVP (2) are
shown in Fig. 1(b). It has typical Bessel-beam intensity
profile I ∝ jJlðρ̃Þj2 in the ðζ; xÞ plane, contains an edge
phase dislocation of order l, and propagates with the speed
of light along the z axis.
Importantly, the nondiffracting solution (2) is a result of

linear expansion of ωðϕ̃Þ with respect to Δk. The exact
solution (1) evolves in time as shown in Fig. 2. Namely, the
lth order phase dislocation in the pulse center splits into a
raw of jlj first-order dislocations oriented diagonally in the
ðζ; xÞ plane. This temporal diffraction was predicted in
Ref. [25] and observed in [27]. Akin to the Rayleigh range
characterizing spatial diffraction, a typical scale of the
temporal diffraction is given by the “temporal Rayleigh
range” ctR ¼ k0=Δk2, Fig. 2. Notably, nondiffracting
Bessel-like STVPs can be constructed using the wave
vectors distributed along an ellipse in k space which could
be Lorentz transformed to a monochromatic circle [25]. In
our case, the circular spectrum in Fig. 1(b) should be
extended along the kz axis to become an ellipse with the
ratio of semiaxes γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðk0=ΔkÞ2

p
.

Vector solutions and spin-orbit effects.—We now exam-
ine vector Bessel STVPs. For simplicity, we consider the
electric field E of transverse electromagnetic waves;
similar arguments could be applied to the magnetic field
and other types of vector waves. Because of the trans-
versality condition, the electric field of each plane wave in
the pulse spectrum must be orthogonal to its wave vector k.
This determines two basic polarizations in the problem:
(i) out-of-plane, E is directed along the y axis, Fig. 3(a),
and (ii) in-plane, E lies in the ðz; xÞ plane, Fig. 3(b).
For the out-of-plane polarization, the field has only one

component, and the problem reduces to the scalar
case: Eyðr; tÞ ∝ ψðr; tÞ.
For the in-plane polarization, the situation is less trivial.

Each plane wave in the pulse spectrum has two electric-
field components, Ex and Ez, Fig. 3(b). The amplitudes and
phases of these components depend on the wave vector k,
which signals the spin-orbit interaction [32,35]. To describe

FIG. 1. The plane-wave spectra (left) and phase-intensity
distributions of real-space wave functions ψðr; tÞ (right) for
(a) the monochromatic Bessel beam with l ¼ 2 and (b) spatio-
temporal Bessel pulse with l ¼ 2, Eqs. (1) and (2). In real-space
distributions, the brightness is proportional to the intensity jψ j2,
while the color indicates the phase ArgðψÞ.

FIG. 2. Temporal diffraction of the spatiotemporal Bessel pulse
(1) with l ¼ 3 and Δk=k0 ¼ 0.3. The characteristic timescale
ctR ¼ k0=Δk2 is analogous to the Rayleigh range of spatially
diffracting beams.
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the spin-orbit effects in the linear approximation in Δk, we
write the electric-field components for each plane wave as
Ex ¼ E cos θ ≃ E and Ez ¼ −E sin θ ≃ −EðΔk=k0Þ sin ϕ̃,
where θ ≤ θ0 is the polar angle of a given wave vector.
Since for the integrand of Eq. (1), iΔk sin ϕ̃ ¼ ∂=∂x, one
can write the real-space transverse (x) and longitudinal (z)
field components as

Exðr; tÞ ≃ ψðr; tÞ; Ezðr; tÞ ≃
i
k0

∂ψðr; tÞ
∂x : ð3Þ

Substituting Eq. (2) into Eq. (3), we obtain the longi-
tudinal field

Ez ∝
iΔk
2

eik0ζ½eiðl−1Þφ̃Jl−1ðρ̃Þ þ eiðlþ1Þφ̃Jlþ1ðρ̃Þ�: ð4Þ

From Eqs. (2)–(4), the total field intensity, I ¼
jExj2 þ jEzj2, is given by

I ∝ J2l þ
Δk2

4k20
½J2l−1 þ J2lþ1 þ 2 cosð2φ̃ÞJl−1Jlþ1�: ð5Þ

Here and hereafter, for brevity, we omit the Bessel-
functions argument ρ̃.
The intensity distribution of the Bessel STVP, Eq. (5),

resembles intensity distributions of vector Bessel beams in
optics [32], acoustics [41], and quantum mechanics [42]. In

particular, the presence of the Bessel functions of orders
l� 1 is a typical signature of the spin-orbit interaction.
The easiest-to-observe spin-orbit effect is a nonzero inten-
sity ∼θ20 in the center of the in-plane-polarized STVPs with
jlj ¼ 1, Fig. 3. For monochromatic vortex beams, this
phenomenon has been observed in optical experiments
[35,43,44]. The main difference is that in the case of
monochromatic vortex beams this effect occurs for circular
polarizations, corresponding to the longitudinal SAM of
the beam, while for STVPs it takes place for the in-plane
linear polarization. As we show below, this polarization
generates a nonzero transverse SAM density directed along
the y axis, i.e., along with the intrinsic OAM of the pulse.
Spin and orbital angular momenta.—Analysis of the

spin and orbital angular momenta of polychromatic STVPs
is a challenging problem because most theoretical methods
are developed for monochromatic fields. Indeed, standard
formulas for the SAM and OAM densities imply averaging
over the cycle of periodic temporal oscillations [7], and
they become ill defined in generic polychromatic fields
[34]. Nonetheless, here we can employ the quasimono-
chromaticity of pulses with Δk ≪ k0 and separate fast
temporal oscillations with the central frequency ω0 ¼ k0c
and slow temporal evolution with the inverse temporal
scale Δkc. This results in the SAM and OAM densities
given by the standard monochromatic formulas involving
canonical SAM and OAM operators and time-dependent
“wave function” Eðr; tÞeiω0t=

ffiffiffiffiffiffi
ω0

p
[7]:

Sy ¼ω−1
0 ImðE�×EÞy; Ly ¼ω−1

0 Im

�
E� ·

∂
∂φ̃E

�
: ð6Þ

Although the angle φ̃ in the ðζ; xÞ plane involves time, in
Eq. (6) we used the fact that at t ¼ 0 it becomes the desired
azimuthal angle in the ðz; xÞ plane, whereas in the dif-
fractionless approximation the SAM and OAM distribu-
tions are invariantly translated together with the pulse along
the z axis.
For the out-of-plane polarization (the scalar case),

Eqs. (6) yield

Sy ¼ 0; Ly ¼ ω−1
0 ðl − k0xÞI; ð7Þ

where I ∝ J2jljðρ̃Þ. The OAM density (7) contains the
standard vortex-related term proportional to l as well as
the k0x-dependent term caused by the z propagation of the
pulse. After integration of the OAM density Ly over the
ðz; xÞ plane, the k0x term vanishes, while the vortex-induced
term yields the integral value of ℏl per photon [1–7]:
ω0hLyi=hIi ¼ l. Here, h� � �i ¼ R � � � dzdx ¼ R � � � dζdx
andwe imply quasimonochromatic quantization of photon’s
energy, ℏω0.

FIG. 3. Electric fields of plane waves in the spectra of Bessel-
type vector STVPs (left) and the corresponding real-space
intensity distributions jEðr; tÞj2 (right) for (a) the out-of-plane
polarization and (b) the in-plane polarization. The parameters are
l ¼ 1 and Δk ¼ 0.7 for better visibility of nonzero intensity (5)
in the center of the pulse in (b).
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For the in-plane polarized pulse (3)–(5), Eqs. (6) yield

Sy ∝ ω−1
0

Δk2x
2lk0

ðJ2lþ1 − J2l−1Þ;

Ly ¼ ω−1
0 ðl − k0xÞI þ

l
2k0x

Sy: ð8Þ

These distributions are depicted in Fig. 4. The nonzero
spin density Sy is a manifestation of the transverse spin
phenomenon, which recently attracted great attention
[7,35,45–47]. Here, the transverse spin arises from the
interference of plane waves with different directions,
phases, and in-plane linear polarizations, Fig. 3(b). The
normalized SAM density ω0Sy=I reaches the minimum and
maximum values of −1 and 1, Fig. 4(a), i.e., the polari-
zation becomes left-hand and right-hand circular in these
zones. As is typical for the transverse spin of free-
space propagating waves [7,45,47], its integral value
vanishes: hSyi ¼ 0.
The OAM density (8) has a form similar to Eq. (7) with

an additional spin-related term; this is also a signature of
the spin-orbit interaction [32,35]. Nonetheless, in contrast
to the analogous spin-dependent OAM parts in mono-
chromatic beams, the integral value of this term vanishes.
[This follows from the relation l

R
∞
0 ðJ2lþ1 − J2l−1Þρ̃dρ̃ ∝

l
R
∞
0 JlðdJl=dρ̃Þdρ̃ ¼ 0.] Thus, akin to the scalar case, the

integral OAM value corresponds to ℏl per photon.
We conclude that in spite of local spin-orbit interaction

effects, the integral SAM and OAM of STVPs are rather
robust:

hSyi ¼ 0;
ω0hLyi
hIi ¼ l: ð9Þ

Importantly, the above calculations are made for STVPs
with circularly symmetric intensity profiles in the ðζ; xÞ
plane. However, in most cases these profiles are elliptical

with some ratio of principal axes γ, as shown in Fig. 5. Such
an elliptical STVP is described by the substitution x → γx
in the scalar wave function (1) and (2) or, equivalently, by
the substitution kx → γ−1kx in the beam spectrum. For the
field of the form ∝ expðilφ̃Þ and the OAM operator
L̂y ¼ −i∂=∂φ̃ ¼ iðx∂=∂ζ − ζ∂=∂xÞ, this results in an
additional factor in the intrinsic OAM value [25,48]:

ω0hLyi
hIi ¼ γ þ γ−1

2
l: ð10Þ

This factor is significant: for example, the experiments
[27,28] generated STVPs with γ ≃ 2.5–3, which yields
ðγ þ γ−1Þ=2 ≃ 1.5–1.7 Figure 5 shows an example of the
STVPs with l ¼ 2, γ ¼ 2, and ω0hLyi=hIi ¼ 2.5.
Conclusions.—We have examined spatiotemporal vortex

pulses with purely transverse intrinsic orbital angular
momentum. We provided analytical Bessel-type solutions,
both scalar and vector, and described their propagation,
polarization, and angular-momentum properties. Most
importantly, we provided accurate calculations of the spin
and orbital angular momenta of STVPs and described
observable spin-orbit interaction phenomena. Notably, the
polarization and spin-orbit effects manifest themselves
locally via observable intensity and spin-density distribu-
tions, while the integral values of the spin and orbital
angular momenta of STVPs are rather robust. At the same
time, the integral OAM value is significantly affected by the
elliptical shape of STVPs with different width and length,
which are typically generated in experiments [27,28].
The results of our work provide a theoretical platform for

investigations of novel spatiotemporal vortex states and call
for experimental measurements of the predicted pola-
rization and angular-momentum phenomena. We consid-
ered Bessel-type pulses solely for the simplicity of
their theoretical description. The results can be straight-
forwardly generalized to the Laguerre-Gaussian-type spec-
tra [1–4], more relevant to typical experimental situations.
Furthermore, a variety of phenomena, well studied for

FIG. 4. Spatial distributions of (a) the normalized transverse
spin angular momentum density ω0Sy=I and (b) the orbital
angular momentum density (with the subtracted propagational
term) ω0Ly þ k0xI in the in-plane-polarized Bessel STVP,
Eqs. (8) and (5). The parameters are l ¼ 2 and Δk=k0 ¼ 0.5.

FIG. 5. The plane-wave spectrum (left) and the phase-intensity
distribution of the real-space wave function ψðr; tÞ (right) for
an elliptical Bessel STVP with l ¼ 2 and ratio of principal
axes γ ¼ 2. The normalized integral OAM of this pulse is
ω0hLyi=hIi ¼ 2.5, Eq. (10).
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monochromatic vortex beams, can now be investigated for
STVPs: e.g., fractional OAM [49,50], shifts at planar
interfaces [51,52], etc.
Importantly, our results are applicable to waves of

different natures. For example, STVPs can be generated
in sound waves in fluids or gases. In doing so, one can use
the scalar approach (1) and (2) for the pressure wave field
Pðr; tÞ or the vector approach similar to Eqs. (3)–(5) for the
velocity wave field Vðr; tÞ. Since sound waves are longi-
tudinal, i.e., Vkk for each plane wave in the spectrum, the
velocity field has the z and x components, Vzðr; tÞ ≃ ψðr; tÞ
and Vxðr; tÞ ≃ −ik−10 ∂ψðr; tÞ=∂x, generating the transverse
spin and related spin-orbit phenomena [41,53].
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