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Ultracold hybrid ion-atom gases represent an exciting frontier for quantum simulation offering a new set of
functionalities and control. Here, we study a mobile ion immersed in a Bose-Einstein condensate and show
that the long-range nature of the ion-atom interaction gives rise to an intricate interplay between few- and
many-body physics. This leads to the existence of several polaronic and molecular states due to the binding of
an increasing number of bosons to the ion, which is well beyond what can be described by a short-range
pseudopotential. We use a complementary set of techniques including a variational ansatz and field theory to
describe this rich physics and calculate the full spectral response of the ion. It follows from thermodynamic
arguments that the ion-atom interaction leads to a mesoscopic dressing cloud of the polarons, and a simplified
model demonstrates that the spectral weight of the molecules scale with increasing powers of the density.
We finally calculate the quantum dynamics of the ion after a quench experiment.
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The versatility and control of atomic gases make them
powerful platforms for quantum simulation of many-body
systems [1,2]. Ions immersed in atomic gases represent an
exciting new research direction due to their hybrid nature,
which enables new functionalities and broader simulation
capabilities. In particular, the excellent control of the
motional and internal degrees of individual ions opens
up new opportunities to explore the interaction between a
small quantum system and its environment, and to address
fundamental questions regarding cooling, decoherence, and
entanglement. The ion can also act as a local probe, which
has indeed already been exploited in classic experiments
investigating vortices [3] and the properties of superfluid
liquid 4He [4–6] and 3He [7–11].
Experiments on ions in atomic gases have explored

atom-ion collisions, sympathetic cooling, controlled chemi-
stry [12–19], transport [20], and molecular formation [21].
Theoretically, the Fröhlich model, valid for weak ion-atom
interaction, was used to explore an ion in an atomic Bose-
Einstein condensate (BEC) [22] and three-body recombi-
nation dynamics was studied in Refs. [23,24]. Several
papers have predicted the formation of molecular ions
based on kinetic and mean-field approaches [25,26],
quantum defect theory [23], and time-dependent Hartree
and Monte Carlo calculations [27,28].
Inspired by this exciting development, we investigate the

spectral and dynamical properties of a mobile ion immersed
in a BEC. We demonstrate that when the range of the ion-
atom interaction is comparable to the interparticle distance,
a rich interplay between few- and many-body physics arises

with several polaronic and molecular states, which cannot
be captured with a pseudopotential approach. Using a
variational wave function that allows for the dressing of
the ion by an infinite number of Bogoliubov modes, we
calculate the full spectral response of the ion, and a
comparison with a field theory calculation based on the
Bethe-Salpeter equation demonstrates that the molecules
are formed by binding an increasing number of bosons to
the ion. We show using a heuristic model that the spectral
weight of these molecules scale with increasing powers of
the BEC density, and from thermodynamic arguments we
conclude that the long-range ion-atom interaction gives rise
to a mesoscopic dressing cloud of the polarons. The
quantum dynamics of the ion ensuing a quench experiment
unveils the molecular states as quantum beats in the
dynamical overlap function.
Model.—Consider an ion of mass m immersed in a BEC

of atoms of mass mB. The Hamiltonian is

Ĥ ¼
X

k

�
k2

2m
â†kâk þ k2

2mB
b̂†kb̂k

�

þ gB
2

X

k;k0;q

b̂†kþqb̂
†
k0−qb̂k0 b̂k

þ
X

k;k0;q

VðqÞâ†k0−qâk0 b̂†kþqb̂k; ð1Þ

where â†k and b̂†k creates an ion and a boson, respectively,
with momentum k. We describe the BEC of density n0
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using Bogoliubov theory giving the dispersion Ek ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k þ 2n0gBϵk

p
with ϵk ¼ k2=2mB and gB ¼ 4πaB=mB

with aB the atom-atom scattering length. The atom-ion
interaction is VðkÞ, and we use units where the system
volume and ℏ are unity.
In real space, the atom-ion interaction has the long-range

asymptotic form VðrÞ ∼ −α=r4, where α is proportional to
the polarizability of the atoms [29]. A characteristic length
scale of the interaction is therefore rion ¼

ffiffiffiffiffiffiffiffiffiffiffi
2mrα

p
with

m−1
r ¼ m−1 þm−1

B , and using the polarizability of atoms
like 87Rb and 23Na this gives rion ∼Oð102Þ nm [26]. This is
of the same order as the average interparticle distance for a
typical BEC with density n0 ∼ 1014 cm−3, and it is there-
fore crucial to include the asymptotic form of VðrÞ in our
analysis. To do this, we use the effective interaction [30]

VðrÞ ¼ −
α

ðr2 þ b2Þ2
r2 − c2

r2 þ c2
; ð2Þ

where the parameter c establishes a repulsive barrier such
that the potential is repulsive (attractive) for c < rðc > rÞ,
while b is related to the depth of the potential. We have
Vð0Þ ¼ α=b4, which is large compared to any other
relevant energy in order to mimic the strong repulsion
when the electron clouds of the atom and the ion overlap.
In the inset of Fig. 1, we plot VðrÞ in units of Eion ¼
1=2mrr2ion for two different values of b. For concreteness,
here and in the rest of the Letter we consider a 87Rbþ ion in
a 87Rb BEC, which can be created by photoionization. In
this case, c ¼ 0.0023rion in Eq. (2), m ¼ mB.
Ion-atom scattering.—In Fig. 1, the atom-ion scattering

length a, obtained by solving the zero energy s-wave
Schrödinger equation with the potential VðrÞ, is plotted as a
function of b. It exhibits several divergencies, which
correspond to the emergence of two-body bound states.
The first bound state appears for b=rion ≃ 0.58, and more

bound states appear as the atom-ion potential becomes
deeper with decreasing b.
A key point is that when the range of the interaction rion

is of the order of or larger than the interparticle distance,
i.e., rion ≳ n−1=30 , we cannot employ the usual short-range
pseudopotential, which has been successfully used to
describe neutral atomic gases. Instead, we need to retain
the full interaction Eq. (2) in our analysis of this strongly
interacting many-body system.
Polarons.—We start by analyzing arguably the most

interesting case, i.e., the high density regime. To account
for the strength and range of the ion-atom interaction,
which may lead to correlations involving many bosons
around the ion, we use a coherent state variational ansatz

jΨðtÞi ¼ e−iϕðtÞe
P

k
½γkðtÞβ̂†k−γ�kðtÞβ̂k�jΨð0Þi; ð3Þ

that allows the ion to be dressed by an infinite amount of
Bogoliubov modes. Here, β̂†k ¼ ukb̂

†
k þ vkb̂−k creates a

Bogoliubov mode with momentum k and energy Ek,
and ϕðtÞ and γkðtÞ are the variational parameters [31].
The initial state jΨð0Þi ¼ â†k¼0jBECi corresponds to the
injection of a zero momentum ion in the BEC. We
determine the dynamical overlap SðtÞ ¼ hΨð0ÞjΨðtÞi ¼
e−iϕðtÞe−1=2

P
k
jγkj2 . The impurity spectral function can

then be obtained by a Fourier transform AðωÞ ¼
Re

R∞
0 SðtÞeiωtdt=π [31,34].

In Fig. 2 (top), we plot the spectral function for the
density n0r3ion ¼ 1 and zero temperature as a function of b
and the corresponding scattering length a. For large b
meaning weak coupling 1=kna ≪ −1 with k3n=6π2 ¼ n0,
there is a well-defined quasiparticle with mean-field energy
E ¼ 2πan0=mr. Its energy decreases with decreasing b
(increasing 1=kna) corresponding to an increasing depth of
the potential, and the mean-field expression eventually
breaks down. This quasiparticle is the attractive Bose
polaron for the ion in direct analogy with what is observed
for neutral impurities [35–38]. Since we have added a
small imaginary part to the frequency for numerical
reasons, its quasiparticle peak becomes indistinguishable
from the many-body continuum starting at energies just
above [39]. The attractive polaron remains a stable ground
state with decreasing b but with a very small residue.
To further analyze the nature of the polaron, we use a

thermodynamic argument to calculate the number of atoms
ΔN in the dressing cloud around the ion as [26,40]

ΔN ¼ −
�∂μI
∂n0

��∂n0
∂μB

�

nI¼0

¼ −
�∂μI
∂μB

�

nI¼0

; ð4Þ

where μI is the energy change when the ion is added to the
BEC, μB ¼ gBn0 is the chemical potential of the atoms,
and nI is the ion density, which is zero for a single ion. For a
given many-body state with energy Ej obtained from

FIG. 1. Atom-ion s-wave scattering length a as a function of b.
Inset: atom-ion potential for b=rion ¼ 0.3 and 0.35.
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Eq. (3), we set μI ¼ Ej in Eq. (4) and calculate ΔN by
numerical differentiation.
In Fig. 2 (bottom), we see that number of bosons in the

dressing cloud around the ion in the polaronic state is quite
large reflecting the strength and range of the atom-ion
interaction. In the weak coupling limit b=rion ≫ 1, we
recover the mean-field result ΔN ¼ −a=aB [26].
Figure 2 (top) furthermore shows that a number of new

states emerge in the regime b=rion < 0.58 where the
interaction supports a two-body bound state. We have

a > 0 for 0.58 > b=rion > 0.35 and a ≤ 0 for 0.35 ≥
b=rion > 0.26 where another bound state emerges, see
Fig. 1. Consider first the branch with the highest energy
emerging for b=rion ≃ 0.34 ⇒ 1=kna ≃ −1.45, shown by a
red dashed line. Its energy εP is larger than zero for
b=rion ≳ 0.32, and in addition the number of particles
ΔN in its dressing cloud is negative as shown in the
bottom panel. From this we conclude that it is a repulsive
polaron. Its energy becomes negative for b=rion ≲ 0.32
where ΔN > 0 showing that it smoothly evolves into an
attractive polaron with increasing depth of the ion-atom
interaction potential. This is qualitatively different from the
case of a neutral impurity with a short-range interaction,
where there is no attractive polaron when there is a
bound state.
Molecular ions.—We now turn our attention to the low

energy states emerging together with the repulsive polaron
at b=rion ≲ 0.34 in Fig. 2 (top) and seen more clearly in the
inset. They are molecular ions arising from the binding of
1; 2;… bosons to the ion. To demonstrate this, we use the
Bethe-Salpeter equation, which provides a general frame-
work for analyzing bound states in a many-body environ-
ment. Consider the scattering matrix between an ion
with momentum/energy k1 ¼ ðk1; iω1Þ and an atom with
momentum/energy k2 ¼ ðk2; iω2Þ. In the ladder approxi-
mation, it obeys the Bethe-Salpeter equation [31]

Γðk1;k2;q; iω1 þ iω2Þ
¼ VðqÞ −

X

q0
Vðq0ÞG11ðk2 − q0Þ

× Gðk1 þ q0ÞΓðk1 þ q0;k2 − q0;q − q0; iω1 þ iω2Þ;
ð5Þ

where q is the momentum transfer, GðkÞ ¼ 1=ðiω −
k2=2mÞ is the ion Green’s function, and G11ðkÞ ¼
u2k=ðiω − EkÞ − v2k=ðiωþ EkÞ is the normal (as opposed
to anomalous) BEC Green’s function for the atoms. The
sum

P
q0 ≡T

P
iω

R
d3q=ð2πÞ3 is both over momenta q and

Matsubara frequencies iω, and we analytically continue
iω → ωþ i0þ as usual. Because of the long range of the
atom-ion potential, it is essential to retain its full momen-
tum dependence in Eq. (5), in contrast to the usual case of a
short-range interaction between neutral atoms.
The ion self-energy Σðk;ωÞ ¼ n0Γðk; 0; 0;ωÞ descri-

bes the scattering of a single atom out of the BEC,
and the quasiparticle energy is obtained by solving
εP;k ¼ k2=2mþ Σðk; εP;kÞ. The resulting ladder approxi-
mation has successfully been applied to explain experi-
mental results for neutral impurities in a BEC forming Bose
polarons [35–38,41]. In the present case it yields the red
line in Fig. 2 (top), which agrees very well with the
variational result for the attractive polaron stable, whereas
it fails to capture the lower lying states.
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FIG. 2. Zero momentum ion spectral function AðωÞ as a
function of the potential parameter b and the corresponding
scattering length a for n0r3ion ¼ 1 (top) and n0r3ion ¼ 0.01
(middle). The black line is the mean-field energy, the red line
is the ladder approximation for the attractive polaron present for
b=rion ≳ 0.5, the red dashed line the repulsive polaron present for
b=rion ≲ 0.34, and the white lines are the molecular states
obtained from the Bethe-Salpeter equation. The stars ⋆ signify
the breakdown of the Bogoliubov approximation. Bottom:
number of atoms in the dressing cloud with the same color
coding as the top panel, except the white molecular lines, which
are represented as green lines. In the top panel, we take the
logarithm to the spectral function, which visually makes the
width appear larger. Middle panel is in linear scale.
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This can, however, be addressed by noting that a pole of
the zero momentum scattering matrix gives the energy
of a bound state. Thus, replacing in Eq. (5) the bare ion
Green’s function with the polaron Green’s function
GjðkÞ ¼ 1=ðiω − εP − k2=2mÞ will give the energy of a
dimer consisting of an atom bound to the polaron. This
yields the top white dashed line in Fig. 2 (top). The
excellent agreement with the variational ansatz shows that
this state indeed arises from the binding of an atom to the
polaron. We perform this procedure recursively by calcu-
lating the scattering matrix between this new molecular
state and an atom, which then yields the second white line
below the attractive polaron in Fig. 2 and so on. Note that
we have used unit residues of all propagators in Eq. (5),
which physically corresponds to assuming that the mole-
cules interact with the ion in the same way as bare atoms.
This is obviously an approximation, but since the energies
obtained from this procedure agree very well with those
from the variational ansatz, we conclude that these
branches indeed involve the binding of one, two, … atoms
to the ion. In the following, we refer for brevity to these
states as molecular ions although they do have a nonzero
quasiparticle residue as is evident from Fig. 2. We note that
dimer states consisting of one atom bound to the ion have
recently been observed [21], and our prediction of molecu-
lar states involving more atoms is consistent with earlier
results based on different methods [25–28].
Note that these molecules are stable only for b signifi-

cantly smaller than b=rion ¼ 0.58 where the two-body
atom-ion state emerges. Hence, many-body effects desta-
bilize the binding of atoms to the ion as compared to the
vacuum case. The molecules are stable for a > 0 and a < 0
as opposed to the case of a short-range interaction, where
similar states are predicted to exist only for a < 0 [42],
again showing the qualitative differences between a
charged and a neutral impurity.
The binding of additional atoms to the ion will even-

tually be halted by the repulsion between them giving a
positive energy ∼aBΔN2. While this effect is not included
in our theory, we can estimate when it becomes important
by calculating the gas factor of the dressing cloud

ffiffiffiffiffiffiffiffiffiffiffi
ncla3B

p
.

Here, ncl ¼ ΔN=r̄3 is the average density of atoms in the
dressing cloud with r̄ ¼ ½R d3rr2jϕðrÞj2�1=2 the spatial size
of the molecule with wave function ϕðrÞ. As explicitly
shown in the Supplemental Material [31], the size of the
molecular states is ∼rion and decreases as they become
increasingly bound. This is around 3 orders of magnitude
larger than the ground state size of Rbþ2 [43], consistent
with their binding energy being much smaller. The ⋆’s in
Fig. 2 indicate when the gas factor of a given molecular
state becomes larger than 0.1. A reliable description of
the region below the stars requires one to go beyond
Bogoliubov theory.
The basic physics of the binding of bosons to the ion can

be captured using the Hamiltonian

Ĥs¼
X∞

l¼0

f½εPþεBðl−1Þ�ĉ†l ĉlþg
ffiffiffiffiffi
n0

p
ĉ†lþ1ĉlþH:c:g: ð6Þ

Here, ĉl creates a state with l bosons bound to the polaron,
εB < 0 is the energy released by the binding of a boson, and
g

ffiffiffiffiffi
n0

p
is the matrix element for this process. Note that this is

proportional to
ffiffiffiffiffi
n0

p
since the boson is taken from the BEC

with density n0. This also means that we can suppress the
momentum since this is zero for all states. The model is
easily solved giving a continued fraction form of the zero
momentum ion Green’s function

GðωÞ−1 ¼ ω − εP −
g2n0

ω − εB − g2n0

ω−2εB− g2n0
ω−3εB−…

: ð7Þ

For g2n0=ε2B ≪ 1, the highest energy pole is ≃εP corre-
sponding to the repulsive polaron and there is an infinite
ladder of poles with energies ≃εP − lεB corresponding to
states with l ¼ 1; 2;… bosons bound to the ion. The
residue of these states is ðg2n0=ε2BÞl ∝ nl0 reflecting that
they involve l bosons taken from the BEC. This scaling
explains the decreasing spectral weight of the deeper
molecular lines seen Fig. 2 (top).
It also means that the relative spectral weight of the

different lines depends on the BEC density. This is
illustrated in Fig. 2 (middle), which shows the ion spectral
function for n0r3ion ¼ 0.01. We see that only two states with
significant spectral weight emerge for b=rion < 0.58 when
the atom-ion potential supports a bound state: the new
polaron and the highest molecular state with one boson
bound to the ion. Since the ground state remains the
attractive polaron, this is consistent with the finding that
for a static ion in the dilute limit, there are 2νs þ 1 solutions
to the Gross-Pitaevskii equation where νs is the number of
two-body bound states of the atom-ion interaction potential
[26,44]. The small spectral weight of the bound states
involving more than one boson also means that they are
quite sensitive to additional damping.
Dynamics.—We finally investigate the quantum dynam-

ics after a zero momentum ion is injected in the BEC.
The overlap SðtÞ ¼ hΨð0ÞjΨðtÞi is plotted in Fig. 3.
For b=rion ¼ 2, we have jSðtÞj → Z for t → ∞ where Z
is the quasiparticle residue of the attractive polaron
[42,45–47]. For b=rion ¼ 0.5 on the other hand, SðtÞ
decreases monotonically to zero since the quasiparticle
has a vanishingly small residue, see Fig. 2 (top). In the right
panel of Fig. 3, we plot SðtÞ when the molecular states are
present. For b=rion ¼ 0.3 (orange), SðtÞ oscillates with an
almost constant amplitude after an initial decay. These
oscillations arise from a coherent population of the
molecular states and the polaron, see Fig. 2 (top). For
b=rion ¼ 0.25 (blue) on the other hand, the polaron is
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strongly damped giving rise to decoherence and SðtÞ
therefore decays monotonically to zero, see Fig. 2 (top).
Figure 3 shows that the many-body timescale is

τion ≈ 1=Eion. For b=rion ¼ 0.25 and rion ¼ 100 nm it is
of the order of τion ≈ 13.55 μs. This should be compared to
the three-body recombination time τ3B ¼ 1=K3n20. Taking
K3 ≈ 3.3–6 × 1025 cm6=s [20,48] and n0 ¼ 1014 cm−3 for
a typical BEC yields τ3B ≈ 160–300 μs. Also, the time
resolution for state-of-the-art hybrid ion-atom experiments
is ≈10 ns. We conclude that the many-body phenomena
described here should be observable before three-body
decay sets in.
Conclusions and outlook.—We studied the static and

dynamical properties of a mobile ion in a BEC. The long-
range nature of the atom-ion interaction was shown to result
in a rich spectrum with several quasiparticle and molecular
ions. We demonstrated that the quantum dynamics after a
quench where the ion is injected into the BEC is charac-
terized by coherent oscillations between the different states
as well as decay. Our work demonstrates the diverse and
exciting physics that can be realized in ion-atom systems
and may serve as a guide as well as motivate future
investigations into these hybrid systems. In particular,
dimer states consisting of one atom bound to the ion have
recently been observed, and it would be very interesting to
extend this experimental search to the predicted deeper
lying larger molecular ions preferably using a high density
BEC [21]. The long-range nature of the interaction fur-
thermore makes ion-atom systems well suited for exploring
angular momentum exchange of the molecules with the
surroundings [49–52]. Radio-frequency and Ramsey spec-
troscopy have been used to measure the spectral function
and the dynamics for neutral impurities [35–38,46,53,54],
and analogous probes for charged impurities would be
highly useful.
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