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Continuous-variable quantum information, encoded into infinite-dimensional quantum systems, is a
promising platform for the realization of many quantum information protocols, including quantum
computation, quantum metrology, quantum cryptography, and quantum communication. To successfully
demonstrate these protocols, an essential step is the certification of multimode continuous-variable
quantum states and quantum devices. This problem is well studied under the assumption that multiple uses
of the same device result in identical and independently distributed (i.i.d.) operations. However, in realistic
scenarios, identical and independent state preparation and calls to the quantum devices cannot be generally
guaranteed. Important instances include adversarial scenarios and instances of time-dependent and
correlated noise. In this Letter, we propose the first set of reliable protocols for verifying multimode
continuous-variable entangled states and devices in these non-i.i.d scenarios. Although not fully universal,
these protocols are applicable to Gaussian quantum states, non-Gaussian hypergraph states, as well as
amplification, attenuation, and purification of noisy coherent states.
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Introduction.—Continuous-variable (CV) quantum
information protocols are widely used in quantum optics
[1,2]. To realize these protocols, it is essential to be able to
perform state and device verification on CV states and
devices [3]. State verification [4–12] addresses the problem
of whether or not a state generated by a quantum device is
close enough to a specified target state. While some
efficient protocols exist [4,7], they require the tested
systems to be identically and independently (i.i.d) prepared,
an assumption that is hard to guarantee in realistic
scenarios. Quantum device verification [13] is the problem
of determining whether the outputs of a quantum device are
close to associated target output states, averaged over all
possible input states. CV quantum device verification in the
non-i.i.d setting has so far been an open problem. In this
Letter, we propose verification protocols for multimode CV
entangled states and CV quantum devices in non-i.i.d
scenarios.
For finite dimensional systems, quantum state and

quantum device characterization schemes in the non i.i.d
setting have received increasing attention in recent years,
motivated by applications in quantum computing and

quantum networks with noisy intermediate-scale quantum
devices [14–17]. There are two important classes of
scenarios where the i.i.d assumption cannot be made.
The first class includes adversarial scenarios, in which
we cannot trust that the adversary will necessarily allow us
access to multiple copies of the same state, or to multiple
uses of the same quantum device. This situation can occur,
for instance, in verifiable blind quantum computing [18],
where malicious servers can send entangled states to the
client to steer computational results. A second class of
scenarios involves the presence of time-dependent noise,
which can exhibit correlations between subsequent uses of
the same device. This situation occur, for example, in the
transmission of photons through an optical fiber, whose
birefringence fluctuates over time [19]. In all these cases,
we cannot trust that a realistic quantum device will output
identical and independently prepared states in each run.
In the non-i.i.d setting for qubits, a powerful method is to

employ the quantum de Finetti theorem, which enables one
to approximate a collection of non-i.i.d states by a smaller
number of copies of i.i.d states after a randomizing pro-
cedure followed by tracing out a subsystem [20]. Leveraging
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this result, one can reduce the problem of non-i.i.d verifi-
cation to the i.i.d scenario. A similar strategy can be used for
CV state verification. In the CV setting, there are two main
classes of quantum de Finetti theorems, which can be
separated into finite dimensional approximations [21],
and infinite dimensional constructions [22]. The existing
finite dimensional approximations have been developed for
applications in quantum key distribution, typically involv-
ing single mode systems, and have an exponential scaling of
the error in the dimension parameter. On the other hand, in
the infinite dimensional constructions one lacks a simple,
practically implementable randomizing procedure required
by the de Finetti theorem to enable the non-i.i.d state to be
approximated by i.i.d states. To circumvent these issues, we
develop a finite dimensional approximation that can be used
for multimode states and has a polynomial scaling of the
error with the dimension parameter.
In our approach, we propose a newmethod, which can be

used to verify a broad class of CV quantum states,
including multimode Gaussian states and CV hypergraph
states. Unlike previous approaches, which used permuta-
tion symmetry by randomly reshuffling the various sys-
tems, our test takes advantage of an additional symmetry
property, namely, symmetry with respect to rotations in
phase space [23]. This additional symmetry allows us to
overcome all the challenges of the non-i.i.d. setting. In our
protocol, the initial non-i.i.d state is randomized not only
by a random permutation, but also by random phase
rotations at each subsystem. These rotations can be
performed without loss of generality owing to the sym-
metry of the states under consideration. Exploiting this
rotational symmetry, we are able to achieve polynomial
scaling of the approximation error between the randomized
non-i.i.d state and its i.i.d approximation with respect to an
effective finite dimension d associated to the family of
states under consideration.
Building on our i.i.d approximation, we then construct a

verification protocol with the desirable properties of sound-
ness and completeness, which are necessary for successful
verification. Soundness of a protocol means that the
probability of false positives is low: if the actual state is
orthogonal to the target state, it should have a low
probability of passing the verification test. Completeness
means that the correct state has a high probability to pass
the test. Thanks to rotational symmetry, we show that the
complexity of our verification protocol has a favourable
scaling in terms of the soundness and completeness
parameters.
Building on our CV verification results, we also provide

the first protocol for CV non-i.i.d quantum device verifi-
cation. This protocol combines a duality between state tests
and channel tests introduced in Ref. [24] and our new
techniques in CV state verification. With these ingredients,
we can demonstrate bounds on the completeness and
soundness of device verification.

Framework.—We now introduce the necessary basics of
CV quantum states and the task of verification, before
going on to demonstrate explicitly our protocols for
specific classes of CV states and channels.
A CV state lies on an infinite dimensional Hilbert space,

equipped with observables with a continuous spectrum,
such as the position and momentum observables of a
quantum particle. CV states are usually implemented by
bosonic systems, described by quantum harmonic oscil-
lators. CV quantum information is encoded in the tensor
product H⊗k of Hilbert space H ¼ Spanfjnign∈N, where
n̂jni ¼ njni is a particle number eigenstate with particle
number operator n̂ ¼ â†â. Quadrature operators are q̂ ≔
½ðâþ â†Þ= ffiffiffi

2
p � and p̂ ≔ ½ðâ − â†Þ= ffiffiffi

2
p

i�. For k-mode CV
states, the quadrature operators are denoted by vector
x̂ ≔ ðq̂1; p̂1;…; q̂k; p̂kÞ.
An important class of CV states are Gaussian states. Pure

Gaussian states can be written in the form US;dj0i⊗k, where
US;d is a Gaussian unitary operation, characterized by an
affine mapping ðS; dÞ∶x̂ → Sx̂þ d, where S ∈ R2k×2k is a
symplectic transformation and d ∈ R2k.
The most common CV measurement is homodyne

detection [25], which is routinely implemented in quantum
optics laboratories. Mathematically, the homodyne meas-
urement corresponds to a projective measurement of a
quadrature operator. This means that the expectation value
of any linear combination of quadratures q̂ðθÞ ≔ cos θq̂þ
sin θp̂ and p̂ðθÞ ≔ − sin θq̂þ cos θp̂, with θ ∈ ½0; π=2Þ,
can be measured using homodyne detection in a rotated
basis.
In state verification, a verifier has to test the preparation

of a target state, denoted by jϕi ∈ H⊗k, where k ∈ Nþ. The
verifier is given n quantum registers, whose state is claimed
to consist of n identical copies of the target state. The actual
state of the n registers is unknown to the verifier, and is
denoted by ρðnÞ ∈ SðH⊗k·nÞ. The state ρðnÞ could deviate
from the ideal state jϕihϕj⊗n due to imperfections of the
source, or could even be prepared by a potentially mali-
cious server. The verifier then chooses n −m quantum
registers uniformly at random, and performs measurements
on each register, to decide whether the reduced state at the
remaining m registers is close enough to jϕihϕj⊗m or not.
From now on, we use the term randomly choosing to
mean choosing from an uniform random distribution.
Denoting 0 ≤ T ≤ 1 as the POVM element on H⊗kðn−mÞ
that corresponds to the verification test flagged as
passed, and 0 < ϵs; ϵc <

1
2
as failure probabilities, a reliable

quantum state verification scheme must satisfy (i)
soundness: for any permutation-invariant ρ ∈ SðH⊗k·nÞ,
trðT ⊗ ð1 − jϕi hϕj⊗mÞρÞ ≤ ϵs, and (ii) completeness:
trðTjϕi hϕj⊗ðn−mÞÞ ≥ 1 − ϵc. Intuitively, a good bound on
soundness denotes a low probability of a false positive, that
is, a low joint probability that the test is passed and yet the
remaining state is orthogonal to the target state. On the
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other hand, completeness guarantees that if the state is
identical to the target state, it must pass the verification test
with a high probability.
The task of quantum device verification, closely related to

state verification, is to determine whether the outputs of a
quantum device are close to target output states or not, when
averaged over a fiducial ensemble of input states. We can
define an ensemble of input states as fpx; ρxgx∈X, whereX is
an index set, fpxgx∈X is a probability distribution, and
ρx ∈ SðH⊗kÞ. Suppose the target outputs are pure states
fjϕixgx∈X, where jϕix ∈ H⊗k. A target channelEt is defined
as the quantum channel that achieves the maximal average
fidelity F̄ðEÞ ≔ P

x∈X pxhϕxjEðρxÞjϕxi, and its maximum
achievable value is denoted by F̄max [26,27].
In this context, an important observation is that any test

of quantum devices can be realized by preparing a single
entangled state on the input and an ancillary system, and to
perform a single joint measurement on the output and the
ancillary system [24]. This observation yields a general
device verification protocol similar to state verification
above. Let EðnÞ be an n · k-mode quantum channel, claimed
to act as n independent uses of the k-mode target channel
Et. Here we regard EðnÞ as a channel with n inputs, each
input consisting of k modes. The verifier then randomly
chooses (n −m) inputs and injects one part of a bipartite
entangled state into each of these inputs. Then, the verifier
can apply local measurements at the outputs and the
ancillary systems, to determine whether the channel EðmÞ

at the remaining m inputs is close to E⊗m
t or not.

A reliable device verification scheme must similarly
satisfy soundness and completeness conditions (i) sound-
ness: for any permutation-invariant n-input channel EðnÞ,

�
T ⊗

�
1 −

F̄⊗m

F̄m
max

��
ðEðnÞÞ ≤ ϵs; ð1Þ

where T is the map from an (n −m)-input quantum channel
to the probability of passing the test, and 1 is a map that
maps any m-input channel into the number 1. (ii) com-
pleteness:

TðE⊗ðn−mÞ
t Þ ≥ 1 − ϵc: ð2Þ

The soundness of channel verification is analogous to that
of state verification, except here the figure of merit is
average fidelity instead of fidelity between the prepared
state and the target state.
State verification under the i.i.d assumption can be

performed by detecting a fidelity witness W, which is an
observable whose expectation value with respect to any
prepared state is a tight lower bound of its fidelity with the
target state. This provides an efficient approach to verify
both CV quantum states [4,7] and CV quantum channels
[13]. In this Letter, although we do not have the i.i.d
assumption, we will continue to use these techniques after
obtaining an i.i.d approximation.

To obtain an i.i.d approximation using a finite d de
Finetti theorem, one needs to filter CV states so they
effectively lie on a d-dimensional subspace. We note that
although one cannot infer whether all the remaining
subsystems are bounded to lie on a finite d-dimensional
subspace by testing partial subsystems, it is possible to
deduce whether a CV state is bounded for most subsystems.
Then through randomization in terms of both permutation
and phase rotations, this almost-bounded CV state is then
close to an i.i.d d-dimensional state, after tracing out part of
its subsystems.
In general non-i.i.d settings, CV quantum state verifi-

cation comprises of two subprotocols: the dimension test
and the fidelity test. The dimension test is used to bound the
dimension d. In the dimension test, the measurement
outcomes of homodyne detection are compared with a
certain threshold. If the measurement outcomes are always
less than the threshold, this gives a strong guarantee that
each subsystem is confined in a subspace spanned by Fock
states jni with n less than d. Through discarding a large
fraction of the subsystems of the randomized non-i.i.d state,
one can treat the state at the remaining subsystems as
approximately i.i.d, due to a finite-d de Finetti theorem.
After getting an i.i.d approximation, the fidelity test, similar
to the test under i.i.d assumption, is to certify the fidelity
between the state at each remaining subsystem and the
target state, by detecting the fidelity witness at partial
subsystems. Figure 1 summarizes the key steps of the
scheme.

FIG. 1. The verifier receives ðk=2þ 1ÞN registers, each of
which is represented by a box and contains an unknown k-mode
state. The verifier randomly chooses kN=2 registers, represented
by red boxes, to apply a dimension test. If the dimension test is
passed, then the verifier goes on with the fidelity test at the other
N registers. Otherwise, the verifier aborts the test (rejects).
Suppose the dimension test is passed. Then, the verifier randomly
chooses N − L registers, represented by boxes with crosses
inside, and discards them. For the remaining registers, the verifier
randomly chooses L −m registers, represented by green boxes, to
perform the fidelity test. If the fidelity test is passed, then the
verifier takes the state in the remaining m registers, represented
by blank boxes, as reliable copies of target state jψi. Otherwise,
the verifier rejects the remaining states.
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The verification protocol.—Suppose the target state
jϕi ¼ Uj0i⊗k is a multimode entangled state, mathemati-
cally obtained by applying a suitable unitary operator U to
the vacuum. Given ðk=2þ 1ÞN quantum registers, each of
which stores a k-mode quantum state, the verifier uses
kN=2 registers for the dimension test. Here N is chosen to
be an even integer. The first step of the dimension test is to
divide the kN=2 registers into k groups of N=2 registers
each. In each group, by comparing the square of homodyne
detection outcomes with an upper bound d0=2 > 0 for N=2
registers, the verifier infers whether most of the k-mode
states in the remaining N registers fall on a finite-dimen-
sional subspace H̄j ≔ fUjnii⊗k

i¼1 j ∀ i; ni ∈ N; nj < d0g of
H⊗k, where 1 ≤ j ≤ k. If the k groups all pass the test, then
most subsystems at the remaining N registers fall on a
finite-dimensional subspace H̄ ≔∩k

j¼1 H̄j of H⊗k. Then
after discarding a large fraction of the remainingN registers
and keeping only L registers (L ≪ N), the reduced state
ρðLÞ at the remaining L registers can be shown to fall on
H̄⊗L and is approximately i.i.d to high probability. Proofs
of these statements can be found in the Supplemental
Material [28]. Finally, the verifier chooses L −m of the
remaining registers to perform the fidelity test. Here one
estimates the expectation value of chosen fidelity witness
1 −Un̂U† at L −m registers. The outcome of the fidelity
then determines whether the fidelity between the states at
the remainingm registers and the tensor product ofm target
states is close to one. We will later explain the detailed
procedure of the dimension test and the fidelity test for
specific target states.
At each round of testing, each register is randomly

chosen and this randomization guarantees permutation
invariance of the registers. Besides permutational sym-
metry, our verification test also exhibits an additional
symmetry, owing to the fact that the vacuum state
j0i⊗k ¼ U†jϕi is invariant under rotations in phase space.
This additional symmetry is enforced by first applying the
unitary operation U†, and then applying a homodyne
detection in a randomly rotated quadrature basis at each
mode. Practically, for certain unitaries U like Gaussian
unitary operations, the application of the unitary gate U†

can be omitted, because it can be reproduced by classical
processing of the measurement outcomes. Because
of this rotational symmetry, only the diagonal entries
of any ρðkN=2þNÞ ∈ LðH⊗kðkN=2þNÞÞ in the basis
fUjnii⊗k

i¼1g⊗ðkN=2þNÞ affects the results of this test.
Now we describe the dimension test in detail for pure

Gaussian target states. In the dimension test, the verifier
divides kN=2 registers into k groups. In jth group ðj ∈ ½k�Þ,
the verifier randomly chooses phase θl ∈ ½0; (π=2)Þ
(l ∈ ½N=2�) at each register and measures either ˆ̃qjðθlÞ or
ˆ̃pjðθlÞ, where ˆ̃qj ¼

P
1≤i≤2k S

⊤
2j−1;iðx̂i − diÞ, and ˆ̃pj ¼P

1≤i≤2k S
⊤
2j;iðx̂i − diÞ are both linear combinations of local

quadrature operators. Repeat the measurement in each
group for N=2 times, and denote the lth measurement
outcome in the jth group by fj;l. For each measurement
outcome, the verifier defines an associated variable zj;l: if
ðfj;lÞ2 > d0=2, zj;l ¼ 1; otherwise, zj;l ¼ 0. After homo-
dyne measurements on the kN=2 registers, if for all j ∈ ½k�,PN=2

l¼1 zj;l ≤ Ne−c
2
0
d0 , with c0 ¼ 1 − ð1= ffiffiffi

2
p Þ, then the states

are considered to have passed the dimension test; other-
wise, the verifier aborts the test as soon as any j fails thePN=2

l¼1 zj;l ≤ Ne−c
2
0
d0 condition and rejects all the states.

If the states pass the dimension test, then the verifier
randomly chooses L ¼ ⌈264k2m2d20 lnð4=ϵÞ=ϵ2 þm⌉ from
the remaining registers, where 0 < ϵ < 1=2 is a tolerant
failure probability, and discards all the other registers.
These registers are now used for the fidelity test, where the
verifier first randomly chooses L −m registers from the L
registers. At the ith register (i ∈ ½L −m�), the verifier
then randomly chooses ji ∈ ½k� and θi ∈ ½0; (π=2)Þ, and
measures either ˆ̃qjiðθiÞ or ˆ̃pjiðθiÞ randomly. Denote the
measurement outcome by χi. After L −m rounds of
measurements, the verifier compares an estimator of the
fidelity witnessW� ¼ 1þ k=2 − k=ðL −mÞPL−m

i¼1 χ2i with
threshold 1 − ðϵ=2mÞ. If W� ≥ 1 − ðϵ=2mÞ, the verifier
accepts the state at remaining m registers as reliable copies
of jϕi. Otherwise, the verifier rejects.
This scheme also works for verification of non-Gaussian

CV hypergraph states [10,42], where the verifier follows
the same procedure, except that ˆ̃qj ≔ Uq̂jU† and ˆ̃pj ≔
Up̂jU† are different from above.
Theorem.—Suppose jϕi ¼ Uj0i⊗k is a k-mode ent-

angled state, where U satisfies that U followed by homo-
dyne detections can be simulated by homodyne detections
followed by classical processing of measurement out-
comes. When

10ke−c
2
0
d0

�
264k2m2d20 ln

4
ϵ

ϵ2
þm

�
≤ ϵ ð3Þ

and

N >
50

64
ln
4k
ϵ
e2c

2
0
d0 ; ð4Þ

this verification scheme, characterized by T, satis-
fies soundness, i.e., for any permutation-invariant
ρ ∈ SðH⊗k·nÞ, trðT ⊗ ð1 − jϕihϕj⊗mÞρÞ ≤ ϵ, and com-
pleteness, i.e., trðTjϕi hϕj⊗ððk=2þ1ÞN−mÞÞ ≥ 1 − ϵ.
The sample complexity of this verification scheme is

ðk=2þ 1ÞN ¼ O

�
k7m4

ϵ6
Poly

�
ln
km
ϵ

��
; ð5Þ

which can be considered as a theoretical upper bound of the
minimum required samples for the most general scenarios
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without energy cutoffs. Compared to the sample complex-
ity L ¼ Ofðk2m2=ϵ2ÞPoly½lnðkm=ϵÞ�g in the i.i.d case, at
most L4 samples are sufficient for CV-state verification in
non-i.i.d scenario. In experiments, unknown quantum states
can be sent to the verifier through light pulses, and the
verifier implements the verification test by applying
homodyne detections on the sequence of pulses. If
we assume that each mode is confined in a subspace
spanned by Fock states jni with n < d0, then the
sample complexity is reduced to O½ðk4m2d40 ln 1=ϵÞ=ϵ3�.
Using state-of-the-art homodyne detections [43,44], for
k4d40 ≲ ½1013ϵ3=ðm2 ln 1=ϵÞ�, the verification test can be
accomplished within a few hours.
These same state verification techniques can also be used

to implement the verification of quantum devices. We begin
with the observation that any test of quantum devices can
be realized by preparing one entangled state on the input
and an ancillary system, and then jointly measuring the
output and the ancillary system [24]. The observable to be
measured can then be chosen to be (average) fidelity
witness as in a state verification task [13]. By adding a
dimension test and rotational symmetry in the fidelity
test, we get our quantum-device verification schemes.
Verification protocols of amplification, attenuation, and
purification of noisy coherent states can be found in the
Supplemental Material [28].
Corollary.—Suppose the target device Et is an optimal

quantum device for amplification, attenuation, or purifica-
tion of noisy coherent states, or a unitary U satisfying that
U followed by homodyne detections can be simulated by
homodyne detections followed by classical processing of
measurement outcomes, and the ensemble state of input
is a Gaussian state. Then when d0 and N satisfy Eqs. (3)
and (4), respectively, the verification scheme satisfies
soundness (1) and completeness (2) with n ¼ ðk=2þ 1ÞN
and ϵs ¼ ϵc ¼ ϵ.
A verification scheme of k-mode quantum devices has

the same sample complexity as shown in Eq. (5).
Conclusions.—We have proposed the first protocols that

can verify both multimode CV entangled states and CV
quantum devices without the assumption of i.i.d state and
device preparation and bounded statistical moments of
quadratures. Through bypassing the i.i.d assumption for
multimode states, our results can be applied to CV blind
quantum computing [7,45,46], where a potentially mali-
cious server may deceive an agent or steer the computa-
tional results by preparing entangled states. Our results can
also be applied to performance benchmarks of quantum
devices [24,26,27,47–52], in a broader setting where the
devices may undergo arbitrary correlated noise processes in
subsequent uses, and may contain an internal memory that
affects their behavior on later inputs.
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