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We develop a new method for the construction of one-dimensional integrable Lindblad systems, which
describe quantum many body models in contact with a Markovian environment. We find several new
models with interesting features, such as annihilation-diffusion processes, a mixture of coherent and
classical particle propagation, and a rectified steady state current. We also find new ways to represent
known classical integrable stochastic equations by integrable Lindblad operators. Our method can be
extended to various other situations and it establishes a structured approach to the study of solvable open
quantum systems.
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Introduction.—One-dimensional quantum integrable
models display exotic physical behavior. They possess a
large number of conserved charges which constrain the
dynamical processes. As a consequence, isolated integrable
models equilibrate to the generalized Gibbs ensemble
(GGE) [1–3], and their large scale transport properties
can be described by generalized hydrodynamics (GHD)
[4,5]. These special properties have been investigated in a
number of experiments with cold atoms, see for example
[6–9]. However, in experiments there are always integra-
bility breaking interactions within the system, and also
between the system and its environment. Recently a
number of works were devoted to the question whether
the integrability breaking effects can be handled within the
GGE and the GHD, see for example [10–17].
The interactions with the environment can be described by

the Lindblad equation if the response of the environment is
Markovian [18–20]. While most Lindbladians explicitly
break integrability, there are cases when the Lindblad
equation itself is integrable, or it shows certain features of
integrability. Finding solvable examples is important
because then the nonequilibrium steady states (NESS) and
the relaxation towards them can be studied with exact
methods. Exact solutions could be used to justify the
approximations involving time-dependent GGE or GHD
[10,16,17,21], and they are also relevant for quantum circuits
[22]. For potential experimental applications see [21,23–26].
Lindblad systems showing various types of solvability

include (i) models solvable by free fermion techniques
[27–30], (ii) boundary driven spin chains that allow for
the construction of their NESS [31–36], (iii) triangular
Lindblad superoperators that allow for the computation of

the Liouvillian spectrum [37,38], (iv) models where the
integrability is established separately for different subspa-
ces of the full operator space [39], and (v) Yang-Baxter
integrable Lindblad systems with local jump operators in
the bulk [40–42]. The latter type of models are related to
solutions of the Yang-Baxter equation, which is a central
algebraic relation in the theory of integrable models [43].
So far there has been no structured approach to Yang-
Baxter integrable Lindblad systems: the examples in the
literature were found through relations to known spin
ladder systems [40–42], but there was no method for
actually constructing new integrable cases.
In the present paper we fill this gap and initiate

a systematic classification of Yang-Baxter integrable
Lindblad systems. We explore certain sections of the
parameter space for such models and we find several
new cases. Our main method is borrowed from [44–47],
where solutions of the Yang-Baxter equation were classi-
fied in various other circumstances. The new Lindblad
systems correspond to novel solutions of the Yang-Baxter
equation and exhibit interesting features, such as a tunable
coupling to the environment and a mixture of coherent and
classical transport.
The Lindblad equation.—We consider a spin-1=2 chain of

lengthL, with a HamiltonianH ¼ P
L
j¼1 hj;jþ1, where hj;jþ1

is the Hamiltonian density acting on the neighboring sites j
and jþ 1.We assume periodic boundary conditions.We also
assume that our model is in contact with a thermal environ-
ment that is Markovian, so that its internal dynamics evolves
much faster than that of our model. In this case, the time
dependence of the density matrix of our model is well
approximated by theLindbladmaster equation [18,19,48,49]:
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Here L is the so-called Lindblad superoperator. In (1) the
commutator term describes coherent time evolution dictated
by the Hamiltonian, and the la are the so-called Lindblad or
jump operators, which describe dissipative processes medi-
ated by the environment. The summation above runs over all
interactions with the environment; we focus on local proc-
esses in the bulk with one family of local jump operators
la ≡ lj;jþ1, which act on sites j and jþ 1 of the spin chain.
Classical flows.—Before discussing the integrable cases

we explain an important connection to integrable classical
stochastic equations, which have a rich history themselves
[50]. It turns out that the Lindblad equation is capable
of realizing the classical flows on the diagonal of the
density matrix. The diagonal elements of ρ can be
understood as classical probabilities of finding the system
in the given state, and in some models the operator space
spanned by the diagonal elements is kept invariant by
the Lindblad superoperator. In such cases the flow
equation (1) for ρ can be projected to the diagonal
elements hn1;…; nLjρjn1;…; nLi≡ Pðn1;…; nLÞ, where
jn1; n2;…; nLi, nj ¼ ↑;↓ are the vectors of the computa-
tional basis. Defining the vector

jPi ¼ Pðn1;…; nLÞjn1;…; nLi; ð2Þ

we obtain a flow equation ∂tjPi ¼ WjPi, where W ¼P
L
j¼1 wj;jþ1 is the generator of the classical flow, with its

matrix elements given by the corresponding projection of
L. Lindblad equations that keep the diagonal of ρ invariant
will be called diagonal preserving.
If the initial ρ is diagonal in such a model, then it will

stay diagonal and the classical flow will be realized.
However, preservation of the diagonal does not imply that
the orthogonal complement of the diagonal subspace is also
conserved, so for generic configurations we can still expect
quantum effects in the time evolution.
An example for a diagonal conserving model was

discussed in [51] (see also [39,52]). Here hj;jþ1 ¼ 0 and
the model has two families of jump operators

lR
j;jþ1 ¼

ffiffiffiffiffiffi
φR

p
σ−j σ

þ
jþ1; lL

j;jþ1 ¼
ffiffiffiffiffiffi
φL

p
σþj σ

−
jþ1; ð3Þ

with φL;R ≥ 0. The resulting classical flow was found to be
the asymmetric simple exclusion process (ASEP), with the
generator being

wj;jþ1 ¼ φR½σ−j σþjþ1 − njð1 − njþ1Þ�
þ þφL½σþj σ−jþ1 − ð1 − njÞnjþ1�: ð4Þ

It is known that the ASEP is related to the Heisenberg XXZ
spin chain [53] and thus it is integrable. However, the

integrability properties of the superoperator itself were not
investigated in [39,51]. We found that the Lindblad system
given by (3) is not Yang-Baxter integrable, but we found
integrable “parent” Lindbladians in some special cases,
see below.
Lindblad equation and spin ladders.—We treat the

Lindblad superoperator as a (non-Hermitian) Hamiltonian
of a spin ladder, where the two legs correspond to the “bra”
and “ket” sides of the density matrix [40]. We use the
computational basis to identify the Hilbert space H with its
dual H�. Then the density matrix ρ ∈ H ⊗ H� can be
represented by an element of the tensor productHð1Þ ⊗ Hð2Þ
which in turn is interpreted as the Hilbert space of a
spin ladder.
As mentioned, we consider one family of jump operators

in the bulk. Then the superoperator can be written in the
spin ladder representation as L ¼ P

j Lj;jþ1, with

Lj;jþ1 ¼ −ihð1Þj;jþ1 þ ihð2Þ�j;jþ1 þ lð1Þ
j;jþ1l

ð2Þ�
j;jþ1

−
1

2
lð1Þ†
j;jþ1l

ð1Þ
j;jþ1 −

1

2
lð2ÞT
j;jþ1l

ð2Þ�
j;jþ1: ð5Þ

Above the superscript T denotes transpose and the asterisk
stands for complex conjugation component wise. For any
operator A the notation Að1Þ or Að2Þ means that it acts
only on Hð1Þ or Hð2Þ. It is our goal to find integrable spin
ladders with a (non-Hermitian) Hamiltonian having the
structure (5).
Yang-Baxter integrability.—A large class of quantum

integrable models can be constructed from solutions of the
celebrated Yang-Baxter equation (YBE) [43]. The YBE
concerns the so-called R-matrix Rðu; vÞ, which acts on
V ⊗ V ≃ Cd ⊗ Cd, and u and v are the so-called spectral
parameters. The YBE reads

R12ðu1; u2ÞR13ðu1; u3ÞR23ðu2; u3Þ
¼ R23ðu2; u3ÞR13ðu1; u3ÞR12ðu1; u2Þ; ð6Þ

which is an equality for operators acting on V ⊗ V ⊗ V,
and each spectral parameter is associated with a space V.
The solutions generate integrable spin chains; for the
details of the construction we refer to [43,44], and here
we just review a few key statements.
If the regularity condition Rðu; uÞ ¼ P holds with P

being the permutation operator, then we can define a family
of Hamiltonian densities as

hðuÞ ¼ P∂vRðv; uÞjv¼u: ð7Þ

Each hðuÞ describes a nearest neighbor interacting inte-
grable chain with local spaces ≃Cd. The models are
generally different for different values of u. However, if
the Rmatrix is of difference form Rðv; uÞ ¼ Rðv − uÞ, then
the u dependence drops out.
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The models possess a commuting set of chargesQα (with
range α), such that the Hamiltonian is a member of the
series. Identifying Q2 ¼ H, the higher charges can be
obtained either from the transfer matrix [43], or they can
be generated with the so-called boost operator B [54–56] as

Qαþ1ðuÞ ∼ ½B; QαðuÞ�; α > 1: ð8Þ

The boost operator is a differential operator and it depends
on the Hamiltonian density:

B ≔ ∂u þ
X∞
j¼−∞

jhj;jþ1ðuÞ: ð9Þ

This formal infinite sum gives a well-defined commutator
in (8).
Construction of new models.—Let us review the method

of [44–47] to find new integrable Hamiltonians; the
extension to Lindblad systems is discussed afterwards.
The key idea is to start with a Hamiltonian density
hj;jþ1ðuÞ, then find the first nontrivial higher charge
Q3ðuÞ using (8) and (9), and to impose the condition
½Q2ðuÞ; Q3ðuÞ� ¼ 0. This leads to a set of coupled first
order, nonlinear, differential equations for the components
of hðuÞ, which can be solved if an initial Ansatz for hðuÞ is
given. A priori it is not clear whether the commutativity
between Q2ðuÞ and Q3ðuÞ is enough to ensure the
existence of the remaining higher charges, but in all
previous cases this was found to be sufficient. The R
matrix is afterwards found by solving the so-called
Sutherland equation, taking into account (7) and the
regularity condition. This strategy has proven to be
successful in several cases and led to many new solutions
of the Yang-Baxter equation [44–47].
Integrable Lindblad superoperators.—For Lindblad sys-

tems the key is to find a (non-Hermitian) Hamiltonian
density for a spin ladder, which takes the special Lindblad
form (5). However, now we also allow for a u dependence
of the matrices h and l, where u is the spectral parameter
used in the R matrix. Different values of u will generally
give different physical systems, except if the corresponding
Rmatrix is of difference form.We substitute this ansatz into
our integrability constraint and then solve the correspond-
ing set of differential equations for the components of the
operators hðuÞ and lðuÞ.
Strictly speaking we are imposing too strong a condition:

we require that we find a Lindblad superoperator for any
value of u, whereas it would be enough to find a solution of
the Yang-Baxter equation such that the decomposition (5)
works for some value of u. However, this strong require-
ment leads to a structured approach and it allows for a
number of nontrivial Lindblad systems.
Once a model is found, we can apply simple trans-

formations which lead to seemingly different matrices,
nevertheless describing the same physical behavior. These

transformations include (i) unitary basis transformations,
(ii) space and spin reflection, (iii) trivial shifts h ↦ hþ r
with r ∈ R, (iv) telescopic operator shifts hj;jþ1 ↦
hj;jþ1 þ oj − ojþ1, where oj is a one-site operator,
eventually adding up to zero on the periodic chain,
(v) combined shifts

ðh;lÞ ↦ ½hþ iðzl† − z�lÞ;lþ 2z�; z ∈ C; ð10Þ

which leave the superoperator invariant, and (vi) a com-
bined rescaling

ðh;lÞ ↦ ðrh; ffiffiffi
r

p
eiμlÞ; r ∈ Rþ; μ ∈ R; ð11Þ

which only affects the choice of the unit of time. Below we
always choose a representation such that the matrices of
either h or l are as simple as possible.
Partial classification.—We carve out a section of the

space of integrable superoperators by restricting to specific
forms of h and l acting on C2 ⊗ C2. The two choices we
investigate are the following: (A) Lower triangular l
operators with at most two elements below the diagonal.
(B) h and l operators that both conserve the total Sz

quantum number.
Curiously both restrictions (A) and (B) only allow for

very specific Hamiltonian densities: We found that either h
is diagonal, or it is given by

hj;jþ1 ¼
1

2
½eiϕσþj σ−jþ1 þ e−iϕσ−j σ

þ
jþ1�; ϕ ∈ R: ð12Þ

This Hamiltonian density describes a free fermionic
hopping model; the factor of 1=2 is added only for later
convenience. The angle ϕ can be understood as a homo-
geneous twist along the chain, and the ϕ ¼ 0 point
corresponds to the XX spin chain. Alternatively, the model
can be interpreted as the XX chain perturbed by a
Dzyaloshinskii-Moriya interaction term [57].
We use the particle picture to interpret our models. We

choose the vacuum state as the state with all spins down,
and an up spin is interpreted as a particle; the operators
nj ¼ ð1þ σzjÞ=2 measure the local occupation numbers.
We now give a list of integrable Lindbladians, almost

all of which are new. We decided to omit some models
with less interesting physical properties, such as those
with diagonal h and l operators. A complete list will be
presented elsewhere. The R matrices of the models are
presented for all cases in [58].
Model A1.—If we require that l is lower triangular with

just one element below the diagonal then we find only one
solution. It can be represented with h given by (12) and the
Lindblad operator being

lj;jþ1 ¼ σ−j σ
þ
jþ1 − ieiϕð1 − njÞnjþ1: ð13Þ
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The corresponding R matrix is of difference form and
seems to be new. Direct computation shows that the model
is diagonal preserving, and for the diagonal flow we find
the generator

wTASEP
j;jþ1 ¼ σ−j σ

þ
jþ1 − njð1 − njþ1Þ: ð14Þ

This is the generator of the totally asymmetric simple
exclusion process (TASEP) [50]. To our best knowledge
this is the first realization of the TASEP using an integrable
Lindbladian.
Model A2.—If we require a lower triangular l with two

elements below the diagonal and a nondiagonal h we again
find only one solution, which has an R matrix of difference
form. The Hamiltonian density is given by (12) with
ϕ ¼ τπ=2 and the Lindblad operator is now

lj;jþ1 ¼ njþ1 þ τσ−j σ
þ
jþ1 þ σ−j σ

−
jþ1; ð15Þ

where τ ¼ �1. This jump operator describes particle
propagation to the right and local two-body loss. The
model is diagonal preserving with the generator being

wj;jþ1 ¼ −nj þ σ−j σ
þ
jþ1 þ σ−j σ

−
jþ1: ð16Þ

This corresponds to the totally asymmetric limit of the
diffusion-annihilation model treated in [59–61]. To our best
knowledge this is the first time that this generator is
embedded into an integrable Lindbladian.
Let us now turn to the models where both h and l

conserve the global Sz operator.
Model B1.—In this case h ¼ 0 and the Lindblad

operator is

l ¼

0
BBB@

τ 0 0 0

0 0 1 0

0 1 0 0

0 0 0 κ

1
CCCA; ð17Þ

where τ ¼ �1, κ ¼ �1. In the case of τ ¼ κ ¼ 1 the
superoperator is equivalent to the Hamiltonian of the
SUð4Þ-invariant chain; this case was listed in [42].
The R matrix is of difference form for all four choices,
and for τκ ≠ 1 it seems to be new. The model is diagonal
preserving in all four cases and the generator is

wj;jþ1 ¼ σþj σ
−
jþ1 þ σ−j σ

þ
jþ1 − nj − njþ1 þ 2njnjþ1: ð18Þ

This is the generator of the symmetric simple exclusion
process (SSEP) [50]. To our best knowledge it is the first
time that the SSEP is realized by an integrable Lindbladian.
Even though this model is very simple and its dynamics is
generated just by the jump operator, the parameters τ, κ
have an effect on the off-diagonal sectors of the

superoperator, and they influence the Liouvillian spectrum.
There may be interesting and new dynamics for the off-
diagonal elements of ρ.
Model B2.—The Hamiltonian is given by (12) and the

Lindblad operator is given by

lðuÞ
βðuÞ ¼

0
BBB@

chðuÞ 0 0 0

0 1 ishðuÞeiϕ 0

0 −ishðuÞe−iϕ −1 0

0 0 0 −chðuÞ

1
CCCA

ð19Þ

with βðuÞ ¼ ðγ=ð2γchð2uÞ þ 2ÞÞ1=4 and γ ≥ 0 being a
fixed coupling constant. For u ¼ ϕ ¼ 0 this system is
equivalent to the XX model with dephasing noise treated
in [40], which in turn corresponds to the Hubbard model
with imaginary coupling. The R matrix is known and it is
not of difference form [62].
For u ≠ 0 the model can be interpreted as the inhomo-

geneous version of the Hubbard model [42,63], and it
involves a mixture of coherent and stochastic particle
propagation. The particle current Jk can be found
from the continuity relation dnk=dt ¼ Jk−1 − Jk and the
Lindblad equation, and it is given by

Jk ¼ ½1 − 2β2ðuÞshðuÞ�J0k þ β2ðuÞsh2ðuÞðnk − nkþ1Þ:
ð20Þ

Here

J0k ¼
i
2
ðeiϕσþk σ−kþ1 − e−iϕσ−k σ

þ
kþ1Þ; ð21Þ

is the current of the coherent time evolution dictated
by (12), and the remaining terms describe stochastic
transport.
Model B3.—This is a completely new model. The

Hamiltonian is given again by (12) and

l ¼
ffiffiffi
γ

2

r
0
BBB@

γ 0 0 0

0 1 iðγ − 1Þeiϕ 0

0 −iðγ þ 1Þe−iϕ −1 0

0 0 0 γ

1
CCCA: ð22Þ

Here γ ≥ 0 is a coupling constant. The R matrix is of
difference form and it appears to be new. At the special
point γ ¼ 1 the model is diagonal preserving and it
describes the TASEP. For generic values of γ the model
describes a mixture of quantum and classical transport. The
particle current is now given by

PHYSICAL REVIEW LETTERS 126, 240403 (2021)

240403-4



Jk ¼ ð1 − γ2ÞJ0k þ
γð1þ γÞ2

2
nkð1 − nkþ1Þ

−
γð1 − γÞ2

2
ð1 − nkÞnkþ1 ð23Þ

with J0k given by (21). The stochastic terms explicitly break
space reflection symmetry: they describe the current in
the ASEP.
Steady states.—The dynamics of the models lead to the

formation of nonequilibrium steady-states ρ, which satisfy
Lρ ¼ 0. Here we focus on models B2 and B3.
In model B2 the NESS is the infinite temperature

state [40]. In contrast, in model B3 we find that the
NESS is a current carrying mixed state, which actually
degenerates into a pure state if the compatibility condition
eiðϕþπ=2ÞL ¼ 1 holds. For the XX model (ϕ ¼ 0) this means
L≡ 0 mod 4. In such a case let us consider ρh ¼ jΨihΨj
where jΨi is a spin helix state given by

jΨi ¼⊗L
j¼1

1ffiffiffi
2

p
�

1

eijðϕþπ=2Þ

�
: ð24Þ

Direct computation shows that HjΨi ¼ 0 and Lρh ¼ 0 for
every γ. The superoperator conserves particle number, thus
the NESS in the sectors with fixed spin are given by the
appropriate projections of ρh. Numerical studies on small
systems show that these are the unique steady states in the
various spin sectors.
The particle current in the projected states can be

computed easily, and in the thermodynamic limit we find

lim
L→∞

hJki ¼ ð1þ γ2Þhnið1 − hniÞ: ð25Þ

We conjecture that this formula holds generally, even if the
compatibility condition is not met.
We observe a remarkable phenomenon: there is a finite

particle current even if the Lindblad coupling γ is tuned
back to zero. This phenomenon is understood as a
pumping effect [64,65]. The jump operators are coupled
to the coherent current, thus they build up its mean value
over time. The current itself is conserved, thus it cannot
decay. Eventually a current carrying state is produced no
matter how small the coupling is. Our model presents an
exactly solvable case for this phenomenon, earlier dis-
cussed in [64,65]. For the same effect with boundary
driving see [36].
Discussion.—We presented a method for the construc-

tion of integrable Lindblad systems, and found new models
for spin-1=2 chains. As a by-product we also discovered
apparently new solutions of the Yang-Baxter equation,
which can also describe Hermitian spin ladders for different
choices of their parameters.
In some cases our integrable Lindblad superoperators

support known classical flows on the diagonal of the

density matrix. Similar embeddings were already known
in the literature [39,51,52], but the existence of Yang-
Baxter integrable superoperators behind the classical flows
is a new result.
It would be important to continue the classification

commenced in this work; so far we only explored a limited
parameter space for the models. Our methods could
potentially lead to further integrable Lindblad systems,
including models with particle creation and annihilation
processes, multiple families of jump operators, higher
dimensional local spaces, and models with boundaries.
Furthermore, it is desirable to find the Bethe ansatz solution
to model B3, which would lead to an understanding of its
relaxation dynamics.
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