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In this Letter we study how fast the energy density of a quantum gas can increase in time, when the
interatomic interaction characterized by the s-wave scattering length as is increased from zero with
arbitrary time dependence. We show that, at short time, the energy density can at most increase as

ffiffi
t

p
,

which can be achieved when the time dependence of as is also proportional to
ffiffi
t

p
, and especially, a

universal maximum energy growth rate can be reached when as varies as 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏt=ðπmÞp

. If as varies faster or

slower than
ffiffi
t

p
, it is, respectively, proximate to the quench process and the adiabatic process, and both

result in a slower energy growth rate. These results are obtained by analyzing the short time dynamics of the
short-range behavior of the many-body wave function characterized by the contact, and are also confirmed
by numerically solving an example of interacting bosons with time-dependent Bogoliubov theory. These
results can also be verified experimentally in ultracold atomic gases.

DOI: 10.1103/PhysRevLett.126.240401

The ability of tuning interactions between particles is a
major advantage of ultracold atomic systems [1,2].
Especially, by utilizing magnetic and optical tools, the
interaction strength between atoms, usually characterized
by the s-wave scattering length as, can be tuned over a few
thousand of Bohr radius over a few microseconds, which is
a timescale much faster than the many-body relaxation
time. This has led to a number of interesting ultracold
atomic experiments reported in recent years, such as
universal quench dynamics observed by quenching inter-
action to unitarity [3,4], and coherent excitation of the
Higgs mode in superfluid Fermi gases and the Bogoliubov
quasiparticles in Bose condensates by periodically modu-
lating interactions [5–8]. This experimental progress
has also been accompanied by lots of theoretical interest
on studying nonequilibrium dynamics driven by time-
dependent interactions [9–30].
Energy is a fundamental quantity characterizing quan-

tum matters. It is therefore of broad interest to consider
energy dynamics in the nonequilibrium process. Especially,
we address a fundamental issue of how fast we can pump
energy into a system by changing the interaction parameter
and whether there is a universal upper limit for the energy
increasing rate. To be concrete, suppose that we start with a
noninteracting quantum gas with as ¼ 0 and then vary as in
time, and suppose that asðtÞ can be controlled in any
function form, the question is whether there is an upper
bound for the rate of how fast the total energy can increase
as a function of time. In this Letter we show that there does
exist such a universal rate limit, as far as the initial growth
rate is concerned. This result is quite counterintuitive,

because normally the interaction energy increases as the
interaction strength increases. Thus, intuitively, one would
think that a faster increasing of interaction strength should
result in a faster increasing of interaction energy, and
consequently, a faster increasing of the total energy. Since
we consider that as can be increased as fast as one wants, it
seems to indicate that there should not exist such a bound.
However, our results show that this intuition is not

correct. Before presenting the rigorous mathematical state-
ment, we first emphasize that our result is closely tied to a
key quantity in ultracold atomic gases called the contact
[31–39]. It is now well known that for quantum gases with
zero-range interactions, one can define contact C through
the short-range behavior of the many-body wave function
when any two atoms are brought close to each other, or
equivalently, through the high-momentum tail of the
momentum distribution. It has been shown that the total
energy of a quantum gas is directly related to the contact
[31–39].
To gain an intuitive understanding of our results, let us

first consider two limits. On one limit, the fastest change of
the interaction strength is the quench process, during which
as instantaneously jumps from zero to any non-zero value.
However, it can be shown that the contact does not change
and retains zero right after the quench [32], and therefore,
the total energy also does not change after the quench [27].
This means that the fastest change of interaction actually
does not result in a fast change of the total energy, and in
contrast, the interaction energy does not change at all. On
the opposite limit, we can consider an adiabatic varying of
the interaction strength, during which the interaction
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energy does vary in time but it varies adiabatically with
sufficiently slow rate. The physical pictures in these two
limits motivate us to expect a universal maximum growth
rate driven by intermediate rates of varying the interaction
strength. Our studies rigorously establish this physical
picture, and this physical picture is quite general and
can inspire a similar phenomenon in other systems.
General expression for the contact growth.—Here we

consider a uniform Bose gas or spin-1=2 Fermi gas starting
from any noninteracting state jΨ0i at t ¼ 0, and then the
s-wave scattering length asðtÞ can vary with arbitrary time
dependence. Below we use n and nσ to denote the densities
of bosons and fermions with spin-σ (σ ¼ ↑;↓), respec-
tively, and ψ̂ and ψ̂σ to denote boson operator and fermion
operator with spin-σ, respectively. One of the main results
of this work states as follows:
In the short-time limit, the dynamics of the contact CðtÞ is

given by

CðtÞ ¼ g2ð0ÞjηðtÞj2: ð1Þ

Here, g2ðrÞ is defined as hΨ0jψ̂†ðr=2Þψ̂†ð−r=2Þψ̂ð−r=2Þ
ψ̂ðr=2ÞjΨ0i for bosons and hΨ0jψ̂†

↑ðr=2Þψ̂†
↓ð−r=2Þψ̂↓

ð−r=2Þψ̂↑ðr=2ÞjΨ0i for fermions, and g2ð0Þ means g2ðrÞ
evaluated at r ¼ 0. Especially, if jΨ0i is the noninteracting
ground state, then g2ðrÞ ¼ n2 or n↑n↓ for the Bose or the
spin-1=2 Fermi gas. The key result is that the function ηðtÞ
obeys the following integral equation

�
L̂þ 1

4πasðtÞ
�
ηðtÞ ¼ −1; ð2Þ

where L̂ is a linear operator acting on ηðtÞ as

L̂ηðtÞ ¼
�
m
ℏ

�1
2 1

8π3=2
ffiffi
i

p

× lim
ϵ→0þ

�Z
t−ϵ

0

ηðτÞ
ðt − τÞ32 dτ −

2ηðtÞffiffiffi
ϵ

p
�
: ð3Þ

This result is motivated by solving the two-body prob-
lem, which satisfies the following Schrödinger equation in
the relative coordinate r frame as

iℏ
∂ψ
∂t ¼ −

ℏ2∇2ψ

m
þ 4πℏ2asðtÞ

m
δðrÞ ∂

∂r rψ : ð4Þ

Starting from an initial state ψðrÞ ¼ 1=
ffiffiffiffi
V

p
(V is the total

volume of the system), the time evolution of the wave
function always obeys the following asymptotic form in the
short-range r → 0 limit, that is

ψðr; tÞ ¼ ηðtÞ
4π

ffiffiffiffi
V

p
�
1

r
−

1

asðtÞ
�
þOðrÞ; ð5Þ

and it can be shown that ηðtÞ satisfies Eq. (2) [40].
Generalizing this result from the two-body problem to
the many-body problem utilizes the short-time expansion
and is quite straightforward, which yields Eq. (1) [40]. Here
we note that for the two-body problem, ηðtÞ satisfies Eq. (2)
for all timescales, but for the many-body problem, the result
is only valid for the short timescale. Here short time is
defined as the timescale much shorter than the typical
many-body timescale tn ¼ ℏ=En, where En ¼ ℏ2k2n=ð2mÞ
and kn ¼ ð6π2nÞ1=3 (with n replaced by nσ for fermions). In
other words, in such a short timescale, the short-range
behavior of the many-body wave function is still dominated
by the two-body physics.
Contact growth rate.—Here, without loss of generality,

we consider that asðtÞ grows from zero to a positive value
in a power-law function as

asðtÞ ¼
ffiffiffi
2

p
βl0

�
t
t0

�
α

; ð6Þ

where l0 is an arbitrary length unit and t0 is the time units,
and l0 and t0 are both related to the same energy unit as
ℏ=t0 ¼ ℏ2=ð2ml20Þ. For example, when l0 is taken as a few
thousands of Bohr radius, t0 varies from a few tenths to a
thousand of microseconds, depending on the mass of
atoms. α; β are two constants describing the power and
the coefficient, respectively, and a factor

ffiffiffi
2

p
is introduced

just for the later convenience. The operator L̂ has an
important property that

L̂tα ¼
�
m
ℏ

�1
2

BðαÞtα−1
2; ð7Þ

where BðαÞ is a constant given by BðαÞ ¼
i3=2Γðαþ 1Þ=½4πΓðαþ 1=2Þ�. That is to say, suppose
ηðtÞ is a power-law function in t, when L̂ acts on ηðtÞ,
it lowers the power of ηðtÞ by 1=2. This property plays a
crucial role in the following analysis because it means
whether α in Eq. (6) is greater or smaller than 1=2 makes
significant difference.
Case I: α > 1=2. In this case, the 1=ð4πasÞ term

dominates Eq. (2), and thus, to the leading order of t,
ηðtÞ, and CðtÞ are given by

ηðtÞ ¼ −4πasðtÞ; CðtÞ ¼ 16π2a2sðtÞg2ð0Þ: ð8Þ

This is consistent with the adiabatic regime where the
physical quantities only depend on the instantaneous
scattering length at time t.
Case II: α < 1=2. In this case, the L̂ term dominates

Eq. (2), and thus, to the leading order of t, ηðtÞ, and CðtÞ are
given by
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ηðtÞ ¼ −
�
ℏ
m

�1
2 1

Bð1=2Þ
ffiffi
t

p
; CðtÞ ¼ ℏ

m
g2ð0Þ

jBð1=2Þj2 t; ð9Þ

where Bð1=2Þ ¼ −1=ð8 ffiffiffiffiffi
iπ

p Þ. Surprisingly, in this case this
result shows that the growth of contact at the short time is
independent of parameters l0, t0, α, and β in Eq. (6). That is
to say, it is independent of how fast as varies in time. Even
if l0 or β is infinitely large, or α is infinitesimally small, and
then asðtÞ initially grows infinitely fast, the contact always
grows linearly in time with a constant rate. This means that
as long as α < 1=2, the short-range physics at the short time
is the same as a quench process where the scattering length
instantaneously jumps to unitarity.
Case III: α ¼ 1=2. In this case, Eq. (6) becomes

asðtÞ ¼ β

ffiffiffiffiffi
ℏt
m

r
: ð10Þ

By dimension analysis, it is easy to see that l0 and t0 cancel
each other and only the coefficient β enters the expression.
In this case, both the L̂ term and the 1=ð4πasÞ term are
equally important. Also to the leading order of t, we obtain

ηðtÞ ¼ −AðβÞ ffiffi
t

p
; CðtÞ ¼ jAðβÞj2g2ð0Þt; ð11Þ

where AðβÞ is also a constant given by

AðβÞ ¼
�
ℏ
m

�1
2 1

Bð1
2
Þ þ 1

4πβ

: ð12Þ

As one can see from here, this is a critical case. In case III,
by taking β → ∞, Eq. (11) recovers Eq. (9), consistent with
the quench limit, and by taking β → 0, Eq. (11) recovers
Eq. (8), consistent with the adiabatic limit.
Here an important point is that jAðβÞj2 is not a monotonic

function in β. For a given initial state, g2ð0Þ is fixed, and we
can then define the initial growth rate for contact as
vC ¼ limt→0dCðtÞ=dt. As one can see from Eq. (8),
vC ¼ 0 for case I. And for both case II and case III,
vC is a constant, given by jAðβÞj2g2ð0Þ for case III
and jAðβ ¼ ∞Þj2g2ð0Þ for case II. It turns out that
jAðβÞj2 reaches its maximum at βc1 ¼ 2

ffiffiffiffiffiffiffiffi
2=π

p
≈ 1.596,

at which vmax
C ¼ ðℏ=mÞ128πg2ð0Þ.

Energy growth rate.—The total energy density of a
uniform zero-range interacting quantum gas can be mea-
sured through its momentum distribution nk. For example,
for spin-1=2 fermions, it is given by

E ¼
Z

d3k
ð2πÞ3 ϵk

�
nk −

2C
k4

�
þ C
4πmas

; ð13Þ

where nk ¼ nk↑ þ nk↓, ϵk ¼ ℏ2k2=ð2mÞ, and the contact
C is related to nkσ through C≡ limk→∞ k4nkσ [31]. The
same expression, replacing all C by C=2, also holds for the

spinless Bose gas as long as the three-body contact can be
ignored [38].
On the other hand, there is a direct relation between the

time evolution of the energy and the contact. For spin-1=2
fermions it is given as

d
dt

EðtÞ ¼ ℏ2CðtÞ
4πma2sðtÞ

das
dt

: ð14Þ

For spinless bosons, an extra 1=2 factor should also be
added in the right-hand side of Eq. (14). Therefore, based
on the contact growth discussed above, we can determine
the energy growth.
Case I: α > 1=2. With the help of Eq. (8), one can obtain

that

δEðtÞ ¼ 4πℏ2asðtÞ
m

g2ð0Þ; ð15Þ

where δEðtÞ ¼ EðtÞ − Eðt ¼ 0Þ. This result again shows
that the physics in this regime is consistent with the
adiabatic regime where the energy is determined by the
instantaneous scattering length. Since α > 1=2, the energy
increases slower than

ffiffi
t

p
at the short time.

Case II: α < 1=2. In this regime, Eq. (9) gives rise to

δEðtÞ ¼ 16
ffiffiffi
2

p
α

βð1 − αÞ
ℏ2

m
g2ð0Þl0

�
t
t0

�
1−α

: ð16Þ

Since α < 1=2, the energy also increases slower than
ffiffi
t

p
at

the short time. When taking the limit of α → 0, or β → ∞
or l0 → ∞, δEðtÞ → 0, and it is consistent with the fact
there is no energy change for the quench process as
discussed above.
Case III: α ¼ 1=2. In this regime, Eq. (11) yields

δEðtÞ ¼
ffiffiffiffiffi
ℏ3

m

r
jAðβÞj2
4πβ

g2ð0Þ
ffiffi
t

p
: ð17Þ

It is in this case that the energy growth at the short time is
the fastest. Now we can define an energy growth rate
vE ¼ limt→0 dEðtÞ=d

ffiffi
t

p
. For cases I and II, this rate is zero.

In case II, vE is given by
ffiffiffiffiffiffiffiffiffiffiffi
ℏ3=m

p
jAðβÞj2g2ð0Þ=ð4πβÞ,

which reaches its maximum at βc2 ¼ 2=
ffiffiffi
π

p
≈ 1.128 with

vmax
E ¼ 4ð2þ ffiffiffi

2
p Þ ffiffiffi

π
p

g2ð0Þ
ffiffiffiffiffiffiffiffiffiffiffi
ℏ3=m

p
≈ 24.2g2ð0Þ

ffiffiffiffiffiffiffiffiffiffiffi
ℏ3=m

p
.

Note that this value of vmax
E applies for the spin-1=2 Fermi

gas, and for the spinless Bose gas an extra 1=2 factor should
be added.
This maximum energy growth rate is the main result of

this work. We note that, although this result is obtained by
assuming a power-law function of asðtÞ and by considering
positive asðtÞ, it can be extended to other function forms,
such as including the logarithmic function corrections and
starting from nonzero scattering length, and including the
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situations where as varies to negative values. The
results discussed above are summarized in Figs. 1 and 2.
Figures 1(a1) and (a2) show different power-law functions
of asðtÞ given by Eq. (6), either with different power
α, or with different coefficient β and fixed α ¼ 1=2.
Figures 1(b1) and 1(b2) show the corresponding contact
growth, and Figs. 1(c1) and 1(c2) show the corresponding
energy growth, using spinless bosons as an example. It
clearly shows that a faster increasing of as does not
necessarily lead to a faster increasing of the contact and
the energy density. One can see that for different powers,
α ¼ 1=2 gives the fastest contact growth and energy growth
at the short time. And for α fixed at 1=2, β ¼ βc1 yields the
fastest contact growth and β ¼ βc2 yields the fastest energy
growth, as also shown in Fig. 2. In the inset of
Fig. 2(b), we have also shown that a maximum energy
growth rate can also be found for negative β, where as
varies to the negative value.

Example.—The analysis above is based on the short
time expansion. To support the validity of this expansion,
here we consider a concrete example of spinless bosons,
which can be described by the following time-dependent
Hamiltonian

ĤðtÞ ¼
X
k

ϵkb̂
†
kb̂k þUðtÞ

2V

X
k;k0;q

b̂†kb̂
†
q−kb̂q−k0 b̂k0 ; ð18Þ

where b̂k are boson creation operators with momentum k.
UðtÞ is related to asðtÞ through the renormalization relation

1

UðtÞ ¼
m

4πℏ2asðtÞ
−
1

V

X
k

1

2ϵk
: ð19Þ

We solve this Hamiltonian by adopting the Bogoliubov-
type variational ansatz as

jΨðtÞi ¼ N ðtÞ exp
�
g0ðtÞb̂†0 þ

X
k≠0

gkðtÞb̂†kb̂†−k
�
j0i; ð20Þ

where N ðtÞ is a normalization factor, j0i is vacuum of
particles, and g0 and gk are all variational parameters. This
approach is not restricted to the short time and has been
successfully used in the previous studies of degenerate
Bose gas quenched to unitarity [10,13,26]. The evolution of
variational parameters g0ðtÞ and gkðtÞ can be obtained
from the Euler-Lagrange equation for the Lagrangian
L ¼ 1

2
½hΨðtÞj _ΨðtÞi − h _ΨðtÞjΨðtÞi� − hΨðtÞjĤðtÞjΨðtÞi,

which yields a set of differential equations for g0 and gk.
Since we start with a noninteracting Bose condensate, we
take g0 ¼ 1 and gk ¼ 0 at t ¼ 0 as the initial conditions for
these differential equations. We can obtain the variational
wave function by solving these equations, and sub-
sequently, we can determine the total energy density with
Eq. (13). The results for the total energy density are shown

FIG. 1. (a1)–(a2) The time dependence of the scattering length
asðtÞ (in units of l0) with different power-law functions of Eq. (6).
(a1) α ¼ 1=4; 1=2; 3=4, and β is fixed at β ¼ 1. (a2) α is fixed at
α ¼ 1=2 and β ¼ 1=2; 1.128; 1.596, and 4. (b1)–(b2) The short
time behavior of the contact C [in units of g2ð0Þl20] with asðtÞ
plotted in (a1) and (a2), respectively. (c1)–(c2) The time
dependence of the energy density change δE [in units of
g2ð0Þl0ℏ2=m] with asðtÞ plotted in (a1) and (a2), respectively.

FIG. 2. Initial growth rate for contact (a) and for energy (b) as a
function of β for asðtÞ ¼ β

ffiffiffiffiffiffiffiffiffiffiffi
ℏt=m

p
. Arrows mark βc1 and βc2

where the maximum contact growth rate and the maximum
energy growth rate are reached. υC and υE are plotted in units of
g2ð0Þℏ=m and g2ð0Þ

ffiffiffiffiffiffiffiffiffiffiffi
ℏ3=m

p
, respectively. The inset in (b) high-

lights the peak at the negative β side where as changes to negative
values.
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in Fig. 3 for different powers and different coefficients. One
can see that the short time behaviors agree very well with
that given by Figs. 1(c1) and 1(c2).
Summary.—In summary, we have studied the energy

growth rate of degenerate quantum gas driven by increasing
the s-wave scattering length as from zero, by both
analyzing the short time behavior on general situations
and numerically solving a concrete example of interacting
bosons. Two main results are summarized as follows: (i) At
short time, the energy density increases as tα and α cannot
be smaller than 1=2, and α ¼ 1=2 is achieved when asðtÞ
varies as ∝

ffiffi
t

p
. (ii) When asðtÞ varies as ∝

ffiffi
t

p
, the fastest

energy increasing is achieved when asðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏt=ðπmÞp

,
with a maximum energy growth given by 4ð2þ ffiffiffi

2
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πℏ3t=m
p

g2ð0Þ for the spin-1=2 Fermi gas and half of
that for the spinless Bose gas. These results also hold for
harmonic trapped and finite temperature cases when
the trap and the temperature average are performed.
This prediction can be directly verified in cold atom
experiments.
We emphasize that this maximum energy growth rate is

universal, that is, it is independent of any length or energy
scale. This is because when as varies as

ffiffi
t

p
, the entire

many-body Schrödinger equation is invariant under a
space-time scaling transformation t → λ2t and r → λr.
Similar examples of such scale invariant many-body
dynamics have been studied in Refs. [41–43]. Hence, this
result ties together the fastest energy growth with the
scaling symmetry, and this is also reminiscent of the
equilibrium situation, where the interaction effect is the
strongest at unitarity when the system is also scale
invariant.
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