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The interfacial tension of coacervates, the liquidlike phase composed of oppositely charged polymers
that coexists at equilibrium with a supernatant, forms the basis for multiple technologies. Here we present a
comprehensive set of experiments and molecular dynamics simulations to probe the effect of molecular
mass on interfacial tension γ, far from the critical point, and derive γ ¼ γ∞ð1 − h=NÞ, whereN is the degree
of polymerization, γ∞ is the infinite molecular mass limit, and h is a constant that physically corresponds to
the number of monomers of one chain within the coacervate correlation volume.
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Under suitable conditions, solutions of oppositely
charged polymers can form a liquidlike complex coacervate
phase in coexistence with a supernatant phase—a phe-
nomenon known as complex coacervation [1–6]. A key
feature of these coacervates is their ultralow interfacial
tension [7–10] making them appealing for a variety of
applications including underwater adhesives [11], biomedi-
cal technologies [12], etc. [2–4]. Ultralow interfacial
tension is also an important property in biological systems
such as membraneless organelles [13], which have been
described as coacervates [14–16]. However, the full func-
tional dependence of the interfacial tension on all relevant
quantities—salt, temperature, molecular mass—in all
regimes is not yet known. This is in direct contrast
with neutral systems, where extensive efforts have led to
a comprehensive characterization of the interfacial
tension and interfacial profiles, including the effects of
polydispersity [17–22].
Most work thus far has focused on the salt dependence,

as the addition of salt can act as a stimulus shifting the two-
phase system to a homogeneous solution. There have been
several experiments [7–9], simulations [23,24], and, most
notably, a derivation [25] of scaling laws using the Voorn-
Overbeek theory [26,27] coupled with the Cahn-Hilliard
theory [28]. Specifically, Qin and co-workers found that
the interfacial tension γ goes as ð1 − ψ=ψ crÞ3=2=N1=4

near the critical point where ψ is the salt concentration,
ψ cr is the critical salt concentration and N is the degree of
polymerization.
Qin and co-workers derived the dependence of the

interfacial tension on degree of polymerization—the most
important nonstimuli design parameter—near the critical
point. The behavior far from the critical point, however, is
still unknown. In the context of coacervate-based applica-
tions, this knowledge is essential for informed design. For
underwater adhesives, the initial formulation should offer

good wettability and be far from the critical point, such that
stimuli such as pH can trigger a phase transition to a
precipitate or gel phase [29]. For encapsulation, droplet size
depends on the surface tension, and being far from the
critical point enables a dramatic enrichment of cargo such
as RNA, proteins, or flavor-enhancing molecules [12].
The lack of theory in this regime is partly due to a

scarcity of experimental data to motivate a derivation. To
date, only one study by Priftis and co-workers [8] has
explored the molecular mass dependence. They considered
three molecular masses of poly(L-glutamic acid sodium
salt) and poly(L-lysine hydrochloride). As one measure-
ment was likely close to the critical point, only two points
were left to ascertain the trend of molecular mass far from
the critical point. In this Letter, we fill this gap in the
literature by performing experimental measurements for the
molecular mass dependence far from the critical point. We
derive this dependence and further validate it via molecular
dynamics simulations. The resulting interfacial profiles are
computed and compared to theory.
In order to experimentally measure the interfacial tension

for different molecular masses, several key elements are
needed: a reliable method for measuring ultralow interfacial
tensions, low-polydispersity polymers, and a series of
different molecular mass model polymers that form coac-
ervates at the same salt concentration.
We mix polyacrylic acid (PAA) and quaternized poly

(dimethyl aminoethyl methacrylate) (qPDMAEMA) [30]
of varying molecular masses at a 1∶1 charge stoichiometric
ratio in water at an initial polymer concentration of
0.3 mol=L. After trial and error, it was determined that
the measurement criteria were satisfied over a wide degree
of polymerization (69 < N < 451) and temperature (stable
down to 0 °C) when the salt (NaCl) concentration is
100 mmol=L and the pH is 6.5. To confirm these findings,
we also measured the concentration in both the supernatant
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and the coacervate (see Supplemental Material [31] for
details). As can be seen in Table I, the concentrations in
both phases confirm that the system is far from the
critical point.
To robustly measure ultralow interfacial tension, we

leverage recent work by Ali and co-workers that combined
deformed drop retraction analysis and the lower critical
solution temperature property of complex coacervates
[9,37]. Coacervate, in contact with its supernatant, is placed
in a 500 to 800 μm gap between the parallel plates of a
shear cell. After a temperature jump and subsequent
equilibration at 25 °C, well separated 30 to 150 μm drops
of dilute (supernatant) phase are formed. These spherical
drops are deformed to an ellipsoidal shape by applying a
deforming strain controlled via the shear plate. After the
deforming strain is withdrawn, the retraction of the drop to
a spherical shape is measured. This information, combined
with the zero-shear viscosity of the coacervate and super-
natant, enables quantification of the interfacial tension.
Additional experimental details including the necessary
rheological analysis and equations for time-dependent
droplet shape analysis are provided in the Supplemental
Material [31]. The results of these measurements are in
Table I and Fig. 1. The error bars for the interfacial tension
are obtained from 1 standard deviation in the retraction
times measured for at least seven independent drops of
varying sizes.
Empirically, we find that

γ ¼ γ∞ð1 − h=NÞ; ð1Þ

(the black line in Fig. 1), where γ∞ is the interfacial tension
for infinite molecular mass and h is a constant that is
dependent on the system and its conditions (temperature,
charge density, etc.). In order to understand this behavior
from a theoretical perspective, we start with two key
assumptions: (i) the only N dependence in the free energy
is contained in the ideal gas term and (ii) the system
is far from the critical point, where the concentration of
the polymer in the supernatant phase can be approximated
as zero. The first assumption is in line with a variety
of existing theories not only for complex coacervates

[26,38–41], but also for polymeric systems in general
[42–44]. The second assumption is found to be true within
the uncertainty of our measurements (see Table I) and is
consistent with prior experiments [45,46] and simulations
[41] where the concentration in the supernatant was found
to be 2 to 3 orders of magnitude smaller than that of the
coacervate.
We initially ignore the counterions and salt and relax this

constraint later. The dimensionless free energy density is

f ¼ ϕ

N
lnϕþ gðϕÞ; ð2Þ

where ϕ is the monomeric density and gðϕÞ can take any
physically realistic form.
To provide physical intuition, we consider the free

energy of complex coacervation for polymers in a theta
solvent, with the electrostatics treated using the random
phase (one-loop) approximation that accounts for connec-
tivity of charges in polymers [38,39,47]. Namely,

gðϕÞ ¼ wϕ3 þ α3=4ϕ3=4: ð3Þ

2w is the third virial coefficient andα≡12πlBσ
2
c=½ð3πÞ4=3b2�

where lB is the Bjerrum length, which measures the length
scale at which the electrostatic energy is 1 kBT, σc
is the fraction of charged monomers, and b is the
Kuhn length. Although this theory is only strictly valid for
low charge densities, unlike the experimental system con-
sidered here, it allows for determination of γ∞ and h, as well
as calculation of interfacial profiles.

TABLE I. Experimental data for total polymer concentra-
tions (cp) and interfacial tension (γ). 1=N� ¼ 1=ð2NPAAÞ þ
1=ð2NqPDMAEMAÞ for consistency with Ref. [19].

N�
cp (Supernatant)

(mol=L)
cp (Coacervate)

(mol=L) γ (μN=m)

69.5 0.0058� 0.0009 3.24� 0.1 180� 18
145.0 0 3.46� 0.11 610� 50
218.9 0 3.27� 0.11 750� 69
485.6 0.001� 0.004 3.36� 0.11 880� 57
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FIG. 1. Interfacial tension as a function of the degree of
polymerization for the experimental system of PAA and
qPDMAEMA, as well as molecular dynamics of coarse-grained
polymers in a theta solvent both with and without salt. In all
cases, the functional form for the data is γ ¼ γ∞ð1 − h=NÞ. For
the experimental data, γ∞ ¼ 999.6� 3.5 μN=m, h ¼ 56.97�
0.11, and N� is used for the degree of polymerization (see
Table I). Uncertainty in the fit represents standard error.
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Prior to determining the interfacial tension, we determine
the coacervate concentration by assuming the polymer
concentration to be negligible in the supernatant, and
solving for equal osmotic pressures in both phases
[Π ¼ ϕf0ðϕÞ − fðϕÞ ¼ 0]. Applying a perturbative ana-
lysis [48] on ϕ yields an expansion in powers of 1=N:

ϕ ¼ ϕ∞ −
a
N
þO

�
1

N2

�
; ð4Þ

where ϕ∞ and a are subject to

ϕ∞g0ðϕ∞Þ − gðϕ∞Þ ¼ 0 ð5Þ

and

a ¼ 1=g00ðϕ∞Þ: ð6Þ

As gðϕ∞Þ is convex, a is positive.
For the analytic theta solvent case [see Eq. (3)],

ϕ ¼ α1=3

ð8wÞ4=9 −
27=3

9w5=9α1=3N
þO

�
1

N2

�
; ð7Þ

which recovers the expression derived above in the limit
that N approaches infinity [47,49–51].
To confirm this expansion numerically, we perform

molecular dynamics simulations of coarse-grained poly-
mers [52] using the Lennard-Jones potential with a well
depth of 0.3 in reduced units and a cutoff of 2.5σ, where σ
is the bead diameter, to mimic a theta solvent [53]. Each
bead has a unit charge, and the dielectric constant is 1 in
reduced units (in the weak association regime; see
Ref. [54]). A particle-particle particle-mesh Ewald scheme
with an accuracy of 104, an order of 5, and an electrostatic
cutoff of 5σ is used. No counterions or salt are included.
The simulation box is 35σ by 35σ by 350σ. Simulations are
initialized using a self-avoiding random walk of polymers
in a cubic box of 35σ with a density of 0.5σ−3 close to the
final density. A timestep of 0.005, and a total of 9 × 106

steps are used for production after an equilibration
of 106 steps. The lengthy production run combined with
a large box size is required to achieve good statistics
as the fluctuations in the interfacial tension are large.
Equilibration is monitored both through end-to-end dis-
tance of the polymers and interfacial tension. Error bars are
determined from the standard deviation of the five
replicates. All simulations are performed using the Large-
scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [55,56].
The resulting concentration as a function of N is plotted

in Fig. 2. The data can be successfully fit using the derived
functional form [Eq. (4)]. Interestingly, ignoring higher
order terms works well, even down to small values of N.
The experimental data (see Table I) can also be fit with the

derived functional form (see Fig. S3 [31]); however, we
opted not to plot it in Fig. 2 as it can also be fit to cp ¼ cp;∞
as a ¼ 0 within uncertainty.
Using Cahn-Hilliard theory [28], the interfacial tension

can be written as

γ ¼ 2

Z
ϕc

0

½κΔf�1=2dϕ: ð8Þ

Here ϕc is the monomeric concentration in the coacervate
phase, κ is the square gradient term and is equal to
b2=ð24ϕÞ [42,57,58], while Δf is the free energy per
volume for transferring a polymer from an infinite reservoir
of ϕc to ϕ and is equal to fðϕÞ − ϕf0ðϕcÞ [28,59].
After mathematical manipulation (see Supplemental

Material [31] for details), one finds Eq. (1) with

γ∞ ¼ ϕ1=2
∞ bffiffiffi
6

p
Z

1

0

A1=2ðϕ∞; ηÞdη ð9Þ

and

h ¼ −

R
1
0

ϕ∞ ln η

2
ffiffiffiffiffiffiffiffiffiffiffiffi
Aðϕ∞;ηÞ

p dη
R
1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðϕ∞; ηÞ

p
dη

; ð10Þ

where η≡ ϕ=ϕc and Aðϕ∞; ηÞ ¼ gðηϕ∞Þ=η − gðϕ∞Þ. As η
must be less than or equal to one, h is positive; h has no
dependence on a because terms that are of Oð1=NÞ in the
expression for h are equivalent to terms that are ofOð1=N2Þ
in γ, and thus can be ignored.
For the analytic theta solvent case

γ∞ ¼ 0.070bα2=3w−7=18 ð11Þ
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and

h ¼ 2.4α−2=3w−1=9: ð12Þ

The expression for γ∞ recovers previously derived expres-
sions [47,49,50], and the equation for h scales as the
number of monomers within the coacervate correlation
volume (ξ2 ≃ ϕξ3 for w ≃ 1, where ξ is the correlation
length). See Eqs. (8) and (9) in Ref. [47]. For coacervates of
low density, ϕ ≪ 1, this physical meaning of h is general
and independent of the particular form of gðϕÞ, as dem-
onstrated in the Supplemental Material [31].
To further test the theory, we can calculate the interfacial

tension from the simulations using the pressure tensor [via
the first line of Eq. (24) in Ref. [61] ]. The results, shown in
Fig. 1, are also in excellent agreement with the derived
functional form.
The theory also allows us to determine the interfacial

profile numerically for the analytic theta solvent case (see
Supplemental Material [31] for details). Renormalizing the
concentration to the infinite molecular mass limit and
adjusting the constant so the center of the interface is at
x ¼ 0 results in Fig. 3. As one can see, the interfacial width
is asymmetric. We also compare our results to those of
simulations, and find them to be in qualitative agreement
with the theory.
Although we recover the empirically observed molecular

mass dependence, the experimental system includes both
counterions and salt, both of which are ignored in our
derivation thus far. We relax this constraint by updating the
free energy density according to

f ¼ ϕ

N
lnϕþ gðϕ;ψÞ; ð13Þ

where ψ is the salt (and counterion) density and gðϕ;ψÞ
includes the ideal gas contribution from salt. Two equations
must be satisfied at equilibrium: (i) equality of salt
chemical potential and (ii) equality of osmotic pressure
in both phases. The osmotic pressure in the supernatant is
no longer zero due to the presence of salt. Again, the
equality of chemical potentials of the polymer is ignored, as
we constrain the polymer concentration in the supernatant
to be zero. A perturbative analysis yields that both ϕ and ψ
should be expanded in powers of 1=N.
The analogous interfacial tension expression [28] is

γ ¼ 2

Z
ϕc

0

½κϕΔf�1=2
�
1þ κψ

κϕ

�
dϕ
dψ

�
2
�
1=2

dϕ; ð14Þ

where

Δf ¼ fðϕ;ψÞ − ½μeqψ ðψ − ψcÞ þ μeqϕ ðϕ − ϕcÞ þ fðϕc;ψcÞ�:
ð15Þ

Subscript c denotes the coacervate phase, and μeq is the
equilibrium chemical potential. These equations are sup-
plemented by the Euler equations [Δf=∂λ ¼ κλðd2λ=dx2Þ
with λ equal to ϕ or ψ ].
The only N dependence in these equations is in Δf, ϕc,

ψc. Thus, an analogous analysis can be performed to yield
the same functional form of the interfacial tension with
molecular mass even in the presence of salt. The only key
difference is that salt has the same functional form as the
polymer.
To further test our derivation, we also perform molecular

dynamics simulations with explicit counterions (one small
ion per charged monomer) using the same procedure as
outlined above. This serves as a proxy for the addition of
salt, as the counterions may now phase separate [62]. The
results in Figs. 1, 2, and 3 show that the same dependencies
hold. The only additional notable point is that, for the
concentration of small ions in the supernatant, the first term
in the expansion dominates; this is likely a direct result of
the small total ion concentration.
In conclusion, we performed a comprehensive set of

experiments to elucidate the molecular mass dependence of
the interfacial tension far from the critical point, and
proposed a theory to describe the observed scaling in
the same regime. Additional validation of the theory was
provided by molecular dynamics simulations.
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