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Majorana fermions exist on the boundaries of two-dimensional topological superconductors (TSCs) as
charge-neutral quasiparticles. The neutrality makes the detection of such states challenging from both
experimental and theoretical points of view. Current methods largely rely on transport measurements in
which Majorana fermions manifest themselves by inducing electron-pair tunneling at the lead-contacting
point. Here we show that chiral Majorana fermions in TSCs generate enhanced local optical response. The
features of local optical conductivity distinguish them not only from trivial superconductors or insulators
but also from normal fermion edge states such as those in quantum Hall systems. Our results provide a new
applicable method to detect dispersive Majorana fermions and may lead to a novel direction of this research
field.
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The detection and manipulation of Majorana fermion in
solids is a keen issue from the viewpoints of both
fundamental physics and applications [1,2]. Majorana
fermions are neutral and almost free from interactions.
Therefore, it is a challenge to observe and explore experi-
mentally the physical consequences of the Majorana
fermions in solids. Topological superconductors (TSCs)
[3,4] are regarded as promising candidates to realize
Majorana fermions, where the Majorana bound state appear
at the core of the vortex under magnetic field or the
propagating Majorana edge channel exists at the boundary
of the sample [5–9].
Scanning tunneling spectroscopy (STM) is a powerful

tool to detect the Majorana bound state at the zero energy
[10–15]. However, there are other possible reasons for the
bound states near zero at the core of the vortex, and it is
difficult to exclude these other possibilities. Recent
advances are the detection of the quantized conductance
G ¼ ð2e2Þ=h [16], and the high resolution STM at low
temperatures [12]. On the other hand, the propagating
Majorana edge channel is less investigated. The half-
quantization of the conductance G ¼ e2=2h in the structure
made of quantized anomalous Hall system and super-
conductor on the surface of topological insulator was
proposed to be an evidence for this Majorana edge channel
[8,17,18]. However, other possible reasons to explain the
half-quantization of the conductance were proposed
[19,20], and hence the situation is not convincing yet.
STM could be useful also for the Majorana edge channel
[21], but the energy dispersion gives the finite density of
states for the local probe, not the sharp peak. Therefore, it is

desired to explore the spectroscopy of the Majorana edge
channel more in depth.
Microwave spectroscopy with spatial resolution has

been applied to the quantum Hall systems [22] and
recently also to the quantized anomalous Hall systems
[23]. The low frequency optical conductivity and dielec-
tric function can be detected as functions of spatial
position, and the response of the chiral edge channel
has been successfully observed. This is reasonable
because the chiral edge channel is gapless and metallic.
The Majorana edge channel is, on the other hand, neutral
and hence naively does not respond to the electromagnetic
field. This can be understood from the identity γ ¼ γ† and
γ†γ ¼ γ2 ¼ const for the creation and annihilation oper-
ators of Majorana fermion. Therefore, the continuity
equation of charge appears to require ∇ · J ¼ 0 (J: current
density) which prohibits current response in one dimen-
sion. However, the exchange of charge between the edge
and bulk occurs as has been discussed in quantum Hall
system [24], topological insulator [25], and topological
superconductor [25].
In this Letter, we investigate the local optical conduc-

tivities, σxxðωÞ, of two-dimensional (2D) TSCs, especially
of their Majorana edge channels. We start with a model of
spinless pþ ip SC where the Majorana edge modes
generate a frequency-dependent signal. This is followed
by a 1D effective model analysis, which provides a clear
physical picture about the origin of the Majorana signals
and predicts the frequency dependence σxxðωÞ ∼ ω2. Such
a result is in sharp contrast to the ω-independent one of
normal edge modes. The optical signals across the
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topological phase transitions are studied with a model of
quantum anomalous Hall (QAH) insulators in proximity to
a SC.
2D pþ ip superconductors—Consider a 2D spinless

pþ ip superconductor described by the following tight-
binding Hamiltonian,

Hpþip ¼
X
r

X
d¼�x̂;�ŷ

½−tψ†
rψ rþd þ ðΔdψ

†
rψ

†
rþd þ H:c:Þ�

−
X
r

ðμ − 4tÞψ†
rψ r; ð1Þ

where the summation
P

r is over the sites on a two-
dimensional square lattice which is infinite in the x
direction but finite along the y direction. t is the hopping,
μ is the chemical potential, and Δd is the pairing between
neighboring sites, given by Δ�x̂ ¼ iΔ�ŷ ¼ �Δ, where x̂
and ŷ are unit vectors along the x and y directions,
respectively. Quasi-1D chiral Majorana states appear on
the edges when 0 < μ < 8t. The x-direction current density
operator is jxðrÞ ¼ iðet=ℏÞðψ†

rψ rþx̂ − H:c:Þ and the current
operator in a finite region 0 ≤ x ≤ X and 0 ≤ y ≤ Y is

JxðrÞ ¼
1

X

XX
m¼0

XY
n¼0

jxðrþmx̂þ nŷÞ: ð2Þ

Assuming that the light only shines on this region,
one obtains the optical conductivity σðω; rÞ ¼
ω−1

R
∞
0 dteiωth½Jxðr; tÞ; Jxðr; 0Þ�i, where ω is the photon

frequency and this formula is calculated using the Green’s
functions [26].
The real-part conductivities for various values of chemi-

cal potential μ are shown in Fig. 1, with the temperature
T ¼ 0.001=kB (the T dependence is shown in Ref. [26])
and the spot size X ¼ 1, Y ¼ 4. From the bulk values of
ℜ½σxxðω; rÞ�, i.e., the dashed curves in Fig. 1, we can tell
the optical gap is 2Δg ≈ 0.37 and thus the bulk super-
conductivity gap Δg ≈ 0.18. The pairing amplitude varies
with μ so that the bulk gap keeps approximately
unchanged. The ω dependence of ℜ½σxxðω; rÞ� shows a
peak near ℏω ≈ Δg. At energies higher than the peak
position, the curves start to increase again due to the
joining of the bulk states when ℏω > Δg. That is, a photon
may create an in-gap Majorana state along with a bulk state
whose energy is larger than Δg, giving a contribution to the
optical conductivity. For ℏω > 2Δg, the main contribution
comes from the bulk and thus the positions in the bulk and
on the edge give similar results. The results with different
values of the chemical potential μ are similar. But the
magnitude in the small frequency regime increases as we
increase μ since the dispersion becomes flatter, giving a
larger density of states, as shown in the inset of Fig. 1.
1D analysis.—To understand the origin and the features

of the optical conductivity contributed by the Majorana

edge modes, it is helpful to do a 1D analysis with the
effective edge Hamiltonian

Heff ¼ −iv
Z

L

0

dxγðxÞ∂xγðxÞ; ð3Þ

where γ†ðxÞ ¼ γðxÞ is the edgeMajorana field operator. For
convenience, we shall rewrite it in reciprocal space using
the transformation γðxÞ ¼ ð1= ffiffiffiffi

L
p ÞPk>0½γkeikx þ γ†ke

−ikx�,
where L is the length of the hypothetical 1D system. The
Hamiltonian becomes

Heff ¼
X

0<k<Δ=v
vkγ†kγk; ð4Þ

where we apply the energy cutoff Δ, which can be regarded
as the bulk energy gap of a TSC.
For normal chiral fermions, the ground state is obtained

by occupying the states below the Fermi energy. Photon
absorption happens by exciting electrons to higher-energy
empty states, as shown in Fig. 2(a). In contrast, the ground
state of a TSC with chiral Majorana modes consists of a
Cooper pair condensate and the absorption of photons
breaks Cooper pairs into Majorana modes, as shown
in Fig. 2(b). The resulting optical conductivity is
σðω; qÞ ¼ ðωLÞ−1 R∞

0 eiωtdth½J†ðq; tÞ; Jðq; 0Þ�i, where

JðqÞ ¼ eℏ
m�

X
k>0

½ðqþ 2kÞθqþkγ
†
kþqγk þ

�
q
2
− k

�
θq−kγ

†
q−kγ

†
k

þ ðq=2þ kÞθ−ðqþkÞγ−ðqþkÞγk� ð5Þ
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FIG. 1. The frequency dependence of local longitudinal optical
conductivity on the edge of a spinless pþ ip superconductor for
various values of chemical potential μ. The dashed curves are
calculated at a region in the bulk. The inset shows the evolution of
the edge states as μ varies. Other parameters: lattice size along the
y direction Ly ¼ 60, hopping t ¼ 1 is used as the energy unit,

pairing amplitude Δ ¼ 0.2
ffiffiffiffiffiffiffi
t=μ

p
, temperature kBT ¼ 0.001. The

spot size is X ¼ 1 and Y ¼ 4.
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is the edge current operator obtained by projecting the bulk
one onto the Majorana edge states [26]. The parameter m�
is the effective mass which depends on the specific system.
In chiral p-wave SCs, m� is just equal to the bulk electron
mass [27].
At T ¼ 0, the real part of the optical conductivity is

ℜ½σðω; qÞ� ¼ e2

6ℏ

ðℏωξkcÞ2
Δ4

δðq − ℏω=vÞ

×

8>>><
>>>:

1; ℏω=Δ ∈ ½0; 1�;�
2Δ
ℏω − 1

�
3

; ℏω=Δ ∈ ½1; 2�;
0; ℏω=Δ > 2;

ð6Þ

where kc ¼ Δ=v and ξk ¼ ℏ2k2=2m. To relate to
optical microscopy measurements, let us assume the
detecting light to have a Gaussian-distributed intensity
gðxÞ ¼ expð−x2=d2Þ. Then, the quantity detected with
optical microscopy methods is

σðωÞ ¼ 1

πd2

Z
dx

Z
dx0gðxÞgðx0Þσðω; x − x0Þ; ð7Þ

¼ ½σðωÞ�d¼0 exp

�
−
ðdkcÞ2

2

ðℏωÞ2
Δ2

�
: ð8Þ

The real part of ½σðωÞ�d¼0 is simply given by the right-hand
side of Eq. (6) with the delta function omitted.
In Fig. 2(c), ℜ½σðωÞ� at T ¼ 0 is shown for various

values of light distribution width d. The real part of zero-
temperature optical conductivity vanishes at ω ¼ 0 and
increases quadratically for small ω. As the frequency
becomes large, the number of processes to absorb the
photon with frequency ω starts to decrease and thus
ℜ½σðωÞ� shows a peak. When ℏω > 2Δ, the photon energy
exceeds the sum of any two Majorana fermions’ and thus
absorption cannot happen, yielding zero ℜ½σðωÞ�.
Although the static (ω ¼ 0) local conductivity vanishes
at T ¼ 0, it is nonzero when T > 0. In fact, for
kBT ≪ Δ, considering the Fermi distribution of the
quasiparticles, we obtain the on-site (d ¼ 0) response
ℜ½σðω ¼ 0;TÞd¼0� ¼ ðe2=3hÞðξ2kc=Δ4ÞðπkBTÞ2.
When d ¼ 0, the peak is at ℏω ¼ Δ. The sharpness of

the peak comes from the abrupt energy cutoff assumed. If
the light shines on a finite region and thus d is increased,
the signal is reduced because the translational symmetry is
gradually recovered and the transition between states
with different momenta is suppressed. Also, the peak
position of ℜ½σðωÞ� is shifted towards lower frequencies
since larger d means that low-wave-vector (low-energy)
states contribute more than high-wave-vector ones and
thus the low-frequency response is enhanced relatively.
For large dkc, the peak position according to Eq. (8)
is at ℏω0=Δ ¼ ffiffiffi

2
p

=ðdkcÞ, where the peak height is
ℜ½σðω0Þdkc≫1�¼ðe2=hÞðξ2kc=3Δ2Þ½expf−1g=ðdkcÞ2�. Thus
the signal decreases as ∼d−2 when d increases.
As we have seen, the 1D analysis is entirely consistent

with the previous numerical results of the 2D pþ ip TSC.
It clarifies the origin of the optical conductivity and the
reasons behind the frequency dependences throughout the
subgap regime. Furthermore, the 1D results are helpful to a
realistic estimation of Majorana-mode-induced ℜ½σxxðωÞ�,
since they apply to various systems.
For example, assume the Majorana fermions to be the

edge states of a 2D TSC with an energy gap Δ ≈ 10−4μ, μ
being the chemical potential. Then kc is basically the Fermi
wave vector kF and thus ξkc ≈ μ. If kc ≈ kF ≈ 1 Å−1 and
d ≈ 1 μm so that dkc ≈ 104. The peak position in the case
of chiral Majorana modes is ℏω0=Δ ≈ 10−4 and the peak
height is about 0.1e2=h, comparable to the 0.5e2=h of the
chiral normal fermions.
If d is reduced by 1 order of magnitude (d ∼ 0.1 μm),

the Majorana signal is enhanced by 100 times, becoming
much larger than in the normal case. Such strong
optical response of Majorana fermions is due to the large
density of states N . Assuming linear dispersion, we have
N ¼ 1=v ¼ kF=Δ. With given kF, small gap Δ indicates a
small v, giving a large N . For normal chiral fermions, the
current operator is proportional to v and thus the enhanced
density of states is compensated by the reduction in the

(a) (b)

(c)

FIG. 2. (a) Schematic energy spectrum of chiral normal
fermions. A photon can excite an electron in the Fermi sea to
a state above the Fermi energy when the excitation is local, i.e.,
the momentum conservation is broken. (b) For Majorana fer-
mions, the wave vector is limited to k > 0. A photon can create a
pair of Majorana fermions from a Cooper pair. (c) The real part of
optical conductivityℜ½σðωÞ� due to Majorana states shown in (b).
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current operator, resulting in the constant conductivity.
However, for Majorana fermions, J ∝ ðℏk=mÞ [Eq. (5)]
does not depend on v. The enhancement in N is not
compensated and the optical response becomes large.
Recently, a microwave microscopy experiment with an
ultrahigh spatial resolution of 5 nm has been reported [28].
With this size used for d, ℜ½σxx� achieves 4000 e2=h.
For comparison, the optical conductivity of normal chiral

fermions [as illustrated in Fig. 2(a)] can be calculated in a
similar way and it is a constant ℜ½σNðωÞ� ¼ e2=2h, when
ℏω < Δ and kBT ≪ Δ.
Transition between QAH and TSC.—Consider the fol-

lowing 2D Hamiltonian [7],

H ¼
X
k

ψ†
sðkÞ½MðkÞσzss0 þ Aðk · σÞss0 − μδss0 �ψ s0 ðkÞ

þ
X
k

ψ†
sðkÞΔsciσ

y
ss0ψ

†
s0 ð−kÞ; ð9Þ

where MðkÞ ¼ Mz þ tk2 and σ ¼ ðσx; σy; σzÞ are Pauli
matrices. (They should not cause confusion with the
notation of conductivity.) The constant Δsc is the s-wave
SC order parameter, t is hopping, A is spin-orbit coupling,
andMz is magnetization. Depending onMz,Δsc, and μ, this
model has three topologically distinct phases. A TSC with
single chiral Majorana edge state is realized when
μ2 þ Δ2

sc > M2
z . When μ2 þ Δ2

sc < M2
z , it is a QAH insu-

lator if MzA < 0, and a trivial insulator if MzA > 0 [7].
By varying μ and keeping Mz and Δsc unchanged, we

can drive the system from a QAH phase to a TSC that has a
single chiral Majorana edge mode. The local optical
conductivities for three typical values of μ is shown in
Fig. 3. When it is a QAH insulator (μ ¼ 0.2), the optical
conductivity on the edge is almost an ω-independent
constant. The value is lower than e2=2h because the spot
size along the transverse direction (Y) is not large and only
part of the edge state is covered. In the TSC phase, there are
two typical kinds of curves. One of them has a peak at
ω ¼ 0 while the other has a peak at finite ω. This is due to
different dispersion relations of the Majorana edge states as
shown in Fig. 4. When μ is above and close to the critical
value μc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

z − Δ2
sc

p
¼ 0.46, the dispersion of the edge

state is not monotonic. In fact, the spectrum crosses zero
energy 3 times. As μ increases, the edge dispersion
becomes monotonic after a Lifshitz transition at μ ¼ 0.6.
Near this point the edge modes become very flat. The flat
dispersion results in a divergent density of states at zero
energy and thus a peak of ℜ½σxxðω; rÞ� appears at zero
frequency. This peak moves to a higher frequency as μ
further increases and the dispersion becomes more and
more linear (say at μ ¼ 1). Then, it starts to look similar to
the results of previous models. The results for a trivial
insulating phase (Mz ¼ 0.25, Δsc ¼ μ ¼ 0) are also shown
in Fig. 3 for comparison. The optical conductivity vanishes
when the frequency is lower than the insulating gap (around

0.5). Above that, it becomes nonzero. The smallness of
ℜ½σ� is due to the small density of states (because of
numerical finite-size effect) near the gap, as seen in Fig. 4.
Conclusion and discussion.—We have shown that chiral

Majorana edge states in TSCs can be detected by measuring
the local optical conductivity. Compared to normal edge
states, the signals of Majorana fermions is comparable or
even stronger, and it shows qualitatively distinct features

FIG. 3. The real part of the optical conductivity across the phase
transition from a quantum anomalous Hall (QAH) insulator
(μ ¼ 0.2) to a topological superconductor (TSC) with single
Majorana edge mode (μ ¼ 0.6 and μ ¼ 1). All the three cases
haveMz ¼ −0.5. Solid curves are the results on the edge and the
dashed ones are for the bulk. The gray curve is for a trivial
insulating phase with μ ¼ Δsc ¼ 0 and Mz ¼ 0.25. Other param-
eters in Eq. (9) are t ¼ A ¼ 1 (regarded as the energy unit),
Δsc ¼ 0.2, and kBT ¼ 10−3. The dots in the inset, with colors
corresponding to the curves, show the positions of chosen
parameters in the topological phase diagram.

FIG. 4. The evolution of band structures as the chemical
potential μ changes, obtained from Eq. (9). The boundaries in
the y direction are open. Note that there are two chiral Majorana
modes corresponding to the two edges. Also, the redundant
degrees of freedom (the Majorana modes at k < 0) are present
here, which are not independent.
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such as the frequency and temperature dependencies, i.e.,
ℜ½σxx�T¼0 ∼ ω2 and ℜ½σxx�ω¼0 ∼ T2, for small ω and T
[26]. Also, near the topological phase transition from a
QAH insulator to a TSC, the Majorana fermions have rather
flat energy dispersion and the low-frequency optical
response becomes gigantic.
Only the real part of the optical conductivity ℜ½σðωÞ� is

discussed here. The imaginary part ℑ½σðωÞ� may also be
measured with optical microscopy methods. However, in
superconductors, a purely imaginary diamagnetic term,
iðnse2=mωÞ, always appears. In some circumstances it
may be used to distinguish p-wave superconductors from
conventional ones [29,30]. But in our case, it surges up at
the low-frequency limit and thus not really informative
about the Majorana edge states.
One way of realizing the chiral Majorana modes

described by our theoretical models is to use the surface
states of topological insulators such as Bi2Se3 [26]. In this
case, the chemical potential μ should be inside the surface
magnetization gap (Δm ∼ 50 meV [31,32]). Assuming
μ ¼ 50 meV, the SC gap Δsc ¼ 0.1 meV and the detection
spot size d ¼ 5 nm [28], we estimate that the optical
conductivity has a maximum value of ℜ½σxxðω0Þ� ≈
10 e2=h at the peak position ℏω0 ≈ 0.003 meV,
or ω0 ≈ 4.5 GHz.
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