
 

Magnetic Field-Induced “Mirage” Gap in an Ising Superconductor

Gaomin Tang ,1 Christoph Bruder,1 and Wolfgang Belzig 2

1Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
2Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany

(Received 10 November 2020; accepted 14 May 2021; published 9 June 2021)

Superconductivity is commonly destroyed by a magnetic field due to orbital or Zeeman-induced pair
breaking. Surprisingly, the spin-valley locking in a two-dimensional superconductor with spin-orbit
interaction makes the superconducting state resilient to large magnetic fields. We investigate the spectral
properties of such an Ising superconductor in a magnetic field taking into account disorder. The interplay of
the in-plane magnetic field and the Ising spin-orbit coupling leads to noncollinear effective fields. We find
that the emerging singlet and triplet pairing correlations manifest themselves in the occurrence of “mirage”
gaps: at (high) energies of the order of the spin-orbit coupling strength, a gaplike structure in the spectrum
emerges that mirrors the main superconducting gap. We show that these mirage gaps are signatures of the
equal-spin triplet finite-energy pairing correlations and due to their odd parity are sensitive to intervalley
scattering.
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Introduction.—Superconductivity in two-dimensional
materials is a rising topic [1] since these bear a
great potential to host new pairing states due to their
high chemical flexibility and the possibility to combine
different materials in van der Waals heterostructures [2].
Monolayer transition-metal dichalcogenides were
recently shown to be two-dimensional materials [3–6]
with strong spin-orbit effects. Because of the broken in-
plane inversion symmetry, the spin-orbit coupling
arising from the heavy transition-metal atoms gives rise
to a valley-dependent Zeeman-like spin splitting [6,7].
Nevertheless, time-reversal symmetry is preserved
because the internal field is opposite in the K and K0
valleys. Since this Zeeman-like field points out of plane, it
was termed Ising spin-orbit coupling (ISOC) [8–10]. In
such materials superconductivity has been shown to occur
and is believed to be of s-wave type with possible
admixtures of triplet pairing channels.
This so-called Ising superconductivity was experimen-

tally realized from the few-layer down to the monolayer
regime in various transition-metal dichalcogenides [9–25].
Since the electrons are confined to a two-dimensional
plane, the orbital pair-breaking effect from an in-plane
magnetic field is eliminated [26]. The presence of the
ISOC lifts the spin degeneracy in the two valleys and
this results in a considerably enhanced in-plane critical
magnetic field [27–29] beyond the Pauli limit [30,31].
Theoretical studies have mainly focused on the phase
diagram [32–38], the occurrence of parity-mixed super-
conductivity [33,35,39,40], topological superconductivity
[8,41–43], or transport problems [8,44,45]. In particular,
the influence of scattering on the s-wave gap was inves-
tigated [32,35,36]. Moreover, due to the ISOC an in-plane

magnetic field can mediate the conversion from singlet
Cooper pairs to equal-spin triplet pairs [33–35,37,39].
In this Letter, we discuss the emergence of finite-energy

pairing correlations in an Ising superconductor subject to
an in-plane magnetic field. We show that these correla-
tions are accompanied by the appearance of two sym-
metric mirages of the main superconducting gap shifted to
a finite energy [see Figs. 1(b) and 1(c)]. This picture is
confirmed by relating the mirage gaps to finite-energy
pairing that results from a subtle interplay between non-
collinear spins and the valley degree of freedom. Using a
fully self-consistent approach, we show that the interval-
ley scattering due to nonmagnetic impurities destroys the
mirage gaps.
Hamiltonian.—For an Ising superconductor with a spin-

singlet s-wave pairing gap Δ, the effective Bogoliubov–de
Gennes Hamiltonian near one of the valleys can be written
in the Nambu basis ðck;↑; ck;↓; c†−k;↑; c†−k;↓Þ as

HBdG ¼
�
H0ðkÞ Δiσy
−Δiσy −H�

0ð−kÞ
�
: ð1Þ

Here, H0 is

H0ðk ¼ pþ sKÞ ¼ ξpσ0 þ sβsoσz − Bxσx; ð2Þ

where sK is the position of the valley K (s ¼ þ) or K0
(s ¼ −) in momentum space and p is the deviation from the
KðK0Þ-point. Furthermore, ξp ¼ p2=ð2mÞ − μ is the
dispersion measured from the chemical potential μ. The
Pauli matrices σx, σy, and σz act on the spin space and σ0 is
the unit matrix. The ISOC βso pins the electron spins to the
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out of plane. The in-plane magnetic field Bx is along the x
direction and induces the Zeeman term −Bxσx. The
prefactor gLμB=2 with the Landé g factor gL and the
Bohr magneton μB has been absorbed in Bx. Since the
magnetic field Bx, which is valley symmetric, tends to tilt
the electron spins in the x direction, the spins are reoriented
[see Fig. 1(a)]. The band splitting in the normal state
is 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2so þ B2

x

p
.

Finite-energy pairing.—The general pairing-correlation
function can be expressed as [28,29]

Fðk; εÞ ¼ Δ½F0ðk; εÞσ0 þ Fðk; εÞ · σ�iσy; ð3Þ

where F0 and F, respectively, parametrize the singlet and
triplet pairing correlations [46]. Using Eq. (3), the pairing
wave function can be written as

jΨi ¼ F0ðj↑↓i − j↓↑iÞ þ Fxðj↓↓i − j↑↑iÞ
þ iFyðj↓↓i þ j↑↑iÞ þ Fzðj↑↓i þ j↓↑iÞ: ð4Þ

Here, the momentum dependence is omitted, for example,
jk↑;−k↓i is abbreviated as j↑↓i.
We first discuss the low-energy pairing that occurs

around the Fermi energy. In the absence of a magnetic
field Bx, the ISOC field results in opposite energy splittings
in the two valleys so that the amplitude of the pairing state
j↑↓i is different from that of j↓↑i except at the Fermi
momentum. Hence, in addition to the standard singlet pair
amplitude ∝ F0, a pairing state j↑↓i þ j↓↑i is created, i.e.,
Fz is finite [8,28,29,35]. This pair amplitude Fz, which is
due to the ISOC, has the form Fz ∝ sβsoξp [8,39,46] and is
odd in the valley index. In the presence of Bx, the electron
spins are reoriented so that equal-spin pairing states j↑↑ix
and j↓↓ix emerge around the Fermi energy. Here, the
subscript “x” denotes the spin states in the x direction. This
leads to the triplet states j↑↑ix þ j↓↓ix and j↑↑ix − j↓↓ix,
which in the z basis take the form j↑↑i þ j↓↓i and
j↑↓i þ j↓↑i, respectively [46].

The interplay between ISOC and an in-plane magnetic
field leads to a new feature, viz., finite-energy pairing
correlations. A qualitative illustration is provided in
Fig. 1(a) that shows the schematic band structure with
electrons at Fermi momenta pF ¼ � ffiffiffiffiffiffiffiffiffi

2mμ
p

as blue and red
dots. Near the Fermi momentum, the electron at jk↑ix
(jk↓ix) can pair with the electron at j − k↓ix (j − k↑ix) as
indicated by the dashed lines in Fig. 1(a). As a conse-
quence, there is a coexistence of the singlet state j↑↓ix −
j↓↑ix and the triplet state j↑↓ix þ j↓↑ix, which in the z
basis is j↓↓i − j↑↑i [46]. Similarly, there are also equal-
spin triplet states j↓↓i and j↑↑i near the Fermi momenta in
the z direction. This can give rise to the equal-spin triplet
states j↓↓i − j↑↑i and j↓↓i þ j↑↑i. We term these finite-
energy pairing states, since the two electrons forming a
Cooper pair have opposite energies with respect to the
Fermi energy and are separated in energy by about
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2so þ B2

x

p
, which is typically much larger than 2Δ.

The pairing states and the symmetries of the correspond-
ing pair amplitudes are summarized in Table I. The pair
amplitude Fx is odd in time, since Bx breaks the time-
reversal symmetry. The overall antisymmetry of the Cooper
pair wave function is ensured by the parity under exchang-
ing the arguments of spin, valley, and time [47–50]. The
symmetries of the amplitudes Fx and iFy that are even and
odd, respectively, under exchanging the valley indices, will
become clear later in Eq. (9) from the quasiclassical
Green’s function formalism.
The presence of the finite-energy pairing correlations is

reflected in the density of states (DOS). The quasiparticle
energy spectrum for Δ ≪ βso ≪ μ is shown in Fig. 1(b). In
addition to the main superconducting gap, there are mirage
gaps of size δ appearing at the Fermi momentum. These
mirage gaps can be interpreted as an image of the main
superconducting gap shifted by the effective field and are a
hallmark of the finite-energy pairing correlations. Note that
the DOS is finite in the mirage gaps, since in each gap only
one band in each valley participates in the finite-energy

(a) (b) (c)

FIG. 1. (a) Schematic band structure in the normal state. The electrons near the K and K0 valleys are subject to the ISOC βso, which
pins the electron spins to the out-of-plane direction (dashed arrows), and an in-plane magnetic field Bx. For finite Bx, the spin directions
are reoriented (solid arrows). (b) Quasiparticle energy spectrum of Eq. (1) near the Fermi momentum pF with βso ¼ 7Δ, Bx ¼ 2Δ, and
μ ¼ 150Δ. The mirage gaps δ are shifted images of the main superconducting gap. (c) Density of states Ns for different Bx in the clean
limit. All lines for finite Bx have been offset for better visibility. Here, βso ¼ 7Δ0 and T ¼ 0.1Tc0, where Δ0 and Tc0 are, respectively,
the zero-temperature gap and transition temperature in the absence of a magnetic field.

PHYSICAL REVIEW LETTERS 126, 237001 (2021)

237001-2



pairing [see Fig. 1(a)]. The mirage gaps are located at �ε0
with ε0 ¼ ðε1 þ ε2Þ=2, where ε1ð2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2so þ ðBx � ΔÞ2

p
are the eigenvalues of the Hamiltonian HBdG at ξp ¼ 0.
Their widths are δ ¼ ε1 − ε2. The location and width of the
mirage gap can be used to experimentally extract the
strength of the ISOC. This is necessary to estimate the
upper critical magnetic fields at low temperatures, which
are too large to be measured directly at present. For the case
without ISOC (βso ¼ 0), we arrive at ε0 ¼ �Δ and δ ¼ 2Bx
and this reduces to the well-known Zeeman splitting
between the spin-up and spin-down electrons. This splitting
suppresses the formation of Cooper pairs and results in the
paramagnetic limit of superconductivity [30,31]. For
βso ≫ Δ, the mirage gaps are clearly separated from the
main gaps; they appear around the energy

ε0 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2so þ B2

x

q
; ð5Þ

and have widths

δ ≈ 2ΔBx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2so þ B2

x

q
: ð6Þ

It can be inferred that in the absence of Bx, δ vanishes, i.e.,
there is no finite-energy pairing. Note that for Bx ≳ βso pair
breaking sets in so that the main superconducting gap
vanishes and consequently so do the mirage gaps.
Figure 1(c) shows the superconducting DOS Ns (nor-

malized to that of the normal state) for different in-plane
magnetic fields in the clean limit. The curves are calculated
using the quasiclassical Green’s function formalism. The
DOS is 0.5 inside each mirage gap, since only one band in
each valley participates in the pairing. On increasing the
magnetic field, the superconducting gap Δ decreases, while
the mirage gap δ shows a nonmonotonic behavior and first
increases and then decreases. This is due to the interplay
between the gap Δ and the magnetic field Bx, as indicated
by Eq. (6). Below a certain value of Bx, the decreasing
slope of Δ is smaller than the increasing slope of Bx [see
Figs. S4(b) and S4(d) in the Supplemental Material [46] ],
so that the increase of Bx dominates. However, above this
value of Bx, the decrease of Δ dominates and δ decreases.
Quasiclassical Green’s function.—We now describe the

formalism used to calculate the DOS and the pair

amplitudes. Since the quasiclassical formalism concen-
trates on the phenomena close to the Fermi surface [51–54],
it can be applied to the situation where both the super-
conducting gap and the ISOC are much smaller than the
Fermi energy. The general structure of the quasiclassical
Green’s function in Nambu space is [54,55]

ĝðk̂; εÞ ¼
� g0σ0 þ g · σ ðf0σ0 þ f · σÞiσy
ðf̄0σ0 þ f̄ · σ�Þiσy ḡ0σ0 þ ḡ · σ�

�
; ð7Þ

where k̂ denotes the direction of momentum k and ε is the
quasiparticle energy with respect to the Fermi energy. The
bar operation is defined as q̄ðk̂; εÞ ¼ qð−k̂;−ε�Þ� with
q ∈ fg0; f0; g; fg. The anomalous Green’s functions f0
and f , respectively, correspond to F0 and F in Eq. (3). The
DOS Ns is given by Reðg0Þ.
The Eilenberger equation for a homogeneous system

reads [51,54]

½εσ0τ3 − Δ̂ − ν̂ − Σ̂ðεÞ; ĝ� ¼ 0; ð8Þ

with the order parameter term Δ̂ ¼ Δiσyτ2. The
Pauli matrices τ1, τ2, and τ3 act on the Nambu
space and τ0 is the corresponding unit matrix. The
ISOC and Zeeman terms are included in ν̂ with
ν̂ ¼ sβsoσzτ3 − Bxσxτ0. Nonmagnetic impurities are taken
into account using the self-consistent Born approximation
with Σ̂ðεÞ ¼ −iΓhĝðk̂; εÞi, where Γ is the intervalley
impurity scattering rate and h� � �i denotes the average over
the Fermi momentum direction. It has been theoretically
demonstrated that nonmagnetic intervalley scattering can
suppress the upturn of the in-plane critical magnetic field in
the low temperature region [32,35]. According to
Anderson’s theorem [56], intravalley nonmagnetic scatter-
ing has no effect for an s-wave superconductor, which is the
case here. By combining TrðĝÞ ¼ 0 and the normalization
condition ĝ ĝ ¼ σ0τ0, all the components of ĝ can be
obtained. In particular, fx and fy can be, respectively,
written as

fx ¼ aε̃Bx; fy ¼ aisβsoBx; ð9Þ

where ε̃ ¼ εþ iΓg0 and a is fixed by the normalization
condition. The derivation and calculation details can be

TABLE I. Pairing states at zero and finite energy of an Ising superconductor subject to an in-plane magnetic field. Zero-energy Fx
pairing and finite-energy Fz pairing do not exist. The symmetries of the pair amplitudes are characterized by the parity under exchanging
the arguments of spin, valley, and time.

Pairing states (zero energy) Pairing states (finite energy) Spin Valley Time

F0 j↑↓i − j↓↑i j↑↓i − j↓↑i Singlet Even Even
Fx ✗ j↓↓i − j↑↑i Triplet Even Odd
iFy j↓↓i þ j↑↑i j↓↓i þ j↑↑i Triplet Odd Even
Fz j↑↓i þ j↓↑i ✗ Triplet Odd Even
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found in the Supplemental Material [46]. Equation (9)
shows that the ify pairing is a consequence of the interplay
between ISOC and the in-plane magnetic field. We can also
deduce from Eq. (9) that fx and fy are even and odd with
respect to the valley index s, respectively. This confirms the
valley symmetries shown in Table I. The amplitudes of fx
and ify are not equal around ε ¼ �ε0 and the difference
lies in the finite-energy pairing j↑↓ix þ j↓↑ix. Since only
an in-plane magnetic field is applied and the dispersion ξp
is integrated over in the quasiclassical formalism [33,54],
the quasiclassical pair amplitude fz vanishes.
Numerical results and discussion.—To unveil the micro-

scopic mechanism, we present self-consistent numerical
results at different intervalley scattering strengths Γ in
Fig. 2. To account for inelastic processes, a Dynes broad-
ening parameter η ¼ 0.01Δ0 has been added, ε → εþ iη
[57]. Figure 2(b) shows that Imðf0Þ is finite near ε ¼ �ε0;
this is the consequence of finite-energy singlet pairing
j↑↓ix − j↓↑ix. Finite-energy equal-spin pairing correla-
tions j↓↓i ∓ j↑↑i are visible in Figs. 2(c) and 2(d). An
electron in K valley in state jk↑i near energy ε ¼ ε0 pairs
with the electron in state j − k↑i with energy −ε forming
the pairing state j↑↑i [see Fig. 1(a)]. Consequently, ImðfxÞ
is negative while ImðifyÞ is positive around ε ¼ ε0.
Similarly, ImðfxÞ and ImðifyÞ are positive around ε ¼
−ε0 due to the pairing j↓↓i. The pair amplitude ImðfxÞ is
odd in energy due to the time-reversal symmetry breaking
induced by the in-plane magnetic field. The finite values of
ImðifyÞ around the Fermi energy (ε ¼ 0) are a manifes-
tation of the zero-energy pairing j↑↑ix þ j↓↓ix. The finite

values of fx near ε ¼ �Δ are due to the Dynes broadening
used in the numerical calculation.
We now turn to the discussion of nonmagnetic inter-

valley scattering effects. As can be seen from the DOS
[Fig. 2(a)] and the singlet pair amplitude [Fig. 2(b)], the
superconducting gap decreases with increasing impurity
scattering strength [32,35]. Meanwhile, the finite-energy
pairing correlations get suppressed as well and are more
sensitive to the impurity scattering than the zero-energy
singlet pairing. Because of the suppression of the finite-
energy pairing correlations, the DOS inside the mirage gaps
increases. It can be seen from Figs. 2(c) and 2(d) that the
finite-energy pairing correlations almost vanish for
Γ ¼ 2Δ0. The effect of nonmagnetic intervalley scattering
can be explained as follows. First, the mirage gap is
proportional to the main superconducting gap which is
suppressed due to the intervalley scattering. Since non-
magnetic scattering is spin conserving, it connects electron
states from different valleys with the same out-of-plane
spin direction. Because of the spin reorientation by the in-
plane magnetic field, there is scattering between jk↑ix and
j − k↓ix which in turn reduces the effect of the magnetic
field. The effective magnetic field becomes B̃x ¼ Bx þ
iΓgþ;x with gþ;x characterizing the in-plane magnetization
induced by Bx [46]. This further reduces the mirage gap
width. Moreover, because of the finite DOS in one valley
inside the mirage gap of the other valley, nonmagnetic
impurity scattering leads to an imaginary part of the energy
∼Γg0 ≳ Γ=2, so that the coherence peaks of the mirage
gaps are smeared. A more detailed analytical treatment of
the impurity effect is presented in the Supplemental
Material [46].
Here, we only consider an s-wave order parameter in the

singlet channel. The existence of singlet-triplet mixing of
the order parameter has been discussed [20–22,35,40]. The
presence of a triplet component and singlet-triplet mixing
could possibly lead to new and interesting properties of the
mirage gaps.
The mirage gaps appear to be similar to the hybridization

gaps in a two-band superconductor [58]. However, the
underlying physics is quite different. The hybridization
gaps are due to single-quasiparticle scattering between two
superconducting bands, while the mirage gaps are the
consequence of finite-energy pairing. Moreover, the mirage
gaps are associated with triplet pairing correlations, while
the correlations in Ref. [58] are of singlet type. Both
the mirage gaps and hybridization gaps relate to the
appearance of odd-frequency pairing.
It is interesting to compare the finite-energy pairing state

with the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state
[59,60] in superconductors with large magnetic fields. For
the FFLO state, due to the Zeeman splitting, two electrons
at the Fermi surface with the same energy can only pair
with each other at the cost of a finite center-of-mass
momentum. In contrast to that, for the finite-energy pairing,

(a)

(c) (d)

(b)

FIG. 2. Effects of intervalley scattering. Various components of
the Green’s function ĝ at different intervalley scattering strengths
(from bottom to top: Γ ¼ 0, 0.2Δ0, 0.4Δ0, Δ0, 2Δ0) in valley K
with βso ¼ 7Δ0, Bx ¼ 2Δ0, and T ¼ 0.1Tc0. All curves for finite
Γ have been offset for better visibility. For valley K0, the sign of
fy reverses, while the signs of g0, f0, and fx remain unchanged.
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the two electrons forming a Cooper pair have the opposite
momentum at the cost of different energies.
Our findings should be experimentally accessible using

tunneling spectroscopy [13,14,26,61] in an Ising super-
conductor with moderate ISOC, such as MoS2 [1,9,11],
by applying an in-plane magnetic field. For Ising
superconductors with large ISOC, such as NbSe2
[10,16,20–23], WS2 [15], and TaS2 [16], identifying
the mirage gaps requires a relatively large magnetic field
according to Eq. (6). This could be possibly realized
using the magnetic exchange field from a ferromagnetic
substrate [22,23].
To conclude, we have identified the emergence of finite-

energy pairing correlations in an Ising superconductor
subject to an in-plane magnetic field. The accompanying
mirage gaps offer an experimental signature. The mirage
gaps can also lead to equal-spin Andreev reflection at
interfaces between an Ising superconductor and a normal or
ferromagnetic metal. A Josephson junction between two
Ising superconductors with noncollinear in-plane magnetic
fields may host spin-polarized Andreev bound states inside
the mirage gaps that can be detected by spin-resolved
spectroscopy. The concept of the mirage gap thus offers a
new perspective on the interplay between superconductiv-
ity and magnetism.
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