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We prove that the boundaries of all nontrivial (1þ 1)-dimensional intrinsically fermionic symmetry-
protected-topological phases, protected by finite on-site symmetries (unitary or antiunitary), are super-
symmetric quantum mechanical systems. This supersymmetry does not require any fine-tuning of the
underlying Hamiltonian, arises entirely as a consequence of the boundary ’t Hooft anomaly that classifies
the phase, and is related to a “Bose-Fermi” degeneracy different in nature from other well known
degeneracies such as Kramers doublets.
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Topological phases of quantum matter are exotic insu-
lating phases which fall outside the paradigm of sponta-
neous symmetry breaking. The simplest class of these
phases are symmetry-protected-topological (SPT) phases
which are almost indistinguishable from the trivial phase in
the bulk but have marvelous properties on the boundaries
[1–3] such as symmetry protected gaplessness, spectral
degeneracies, and persistent ordering [4]. Well-known
examples of SPT phases are topological insulators [1,2],
topological superconductors [2,3], and the Haldane spin
chain [5]. SPT phases are a subset of the more general
invertible phases whose anomalous boundaries may survive
even if symmetries are explicitly broken. For a particular
dimension of space and global symmetries, invertible
phases of bosons or fermions form an Abelian group
of which SPT phases are a subgroup. The program of
classifying invertible and SPT phases [6,7] has uncovered
fascinating algebraic structures present in the space of
quantum many-body systems through a vibrant collabora-
tion between areas of theoretical physics and mathematics.
The nontrivial nature of the boundaries of SPT phases
arises from an anomalous [8] realization of global sym-
metries on the boundary degrees of freedom [9]. This
’t Hooft anomaly is manifested in the form of emergent,
extended symmetries [10] and fractional quantum numbers
[11]. In one spatial dimension, the anomalous boundary
manifests itself by symmetries being represented projec-
tively [12–14]. In this Letter, we present a universal
property of nontrivial ð1þ 1ÞD intrinsically fermionic
SPT phases, i.e., which cannot be interpreted as bosonic
SPT phases stacked with gapped fermions protected by
finite on-site symmetries. We prove that as a consequence
of the boundary anomaly, i.e., projectively represented
fermionic symmetries, any symmetry preserving boundary
Hamiltonian of any member of any such phase is a
supersymmetric quantum mechanical system [15–17].

Originally introduced as a resolution to certain issues in
fundamental and particle physics [18], supersymmetry
(SUSY) has served as a powerful theoretical tool to uncover
aspects of quantum field theories [19] as well as a way to
elegantly prove mathematical theorems using techniques
from physics [20]. Although signatures of space-time
SUSY in particle interactions have not yet been detected
in particle colliders [21], proposals exist for their emer-
gence and detection in condensed matter [22–29] and cold-
atomic systems [30–33]. To the best of our knowledge, all
these proposals require some combination of (i) fine-tuning
of parameters, (ii) exotic bulk symmetries, or (iii) special
local Hilbert space structure.
Our work provides a generic and robust setting for the

emergence and detection of the simplest version of
SUSY—supersymmetric quantum mechanics (SUSY
QM) [15–17] without any fine-tuning, in one-dimensional
fermion systems with symmetries and Hilbert spaces
accessible to current experimental efforts [1,2] such as
spinful fermions with time-reversal symmetry. This is
because the emergent SUSY in our case is a consequence
of the boundary ’t Hooft anomaly—a robust property of
entire phases of matter and consequently can thus be
observed in any member of any of these phases.
In the first part of this Letter, we demonstrate

the emergence of boundary SUSY using the example of
ð1þ 1ÞD time-reversal invariant topological superconduc-
tors [13,14]. In the second, we place the example in a
general setting by proving a theorem which establishes
that boundary SUSY is a generic feature of all nontrivial
ð1þ 1ÞD intrinsically fermionic SPT phases with finite
on-site symmetries.
Boundary SUSY of topological superconductors.—In

Refs [13,14], Fidkowski and Kitaev established that invert-
ible phases of ð1þ 1ÞD interacting topological supercon-
ductors with time-reversal symmetry T satisfying
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T 2 ¼ þ1 form a Z8 group. Of these, the phases labeled by
even numbers, ν ¼ 2, 4, 6, forming a Z4 subgroup, are SPT
phases, i.e., require symmetry protection and are trivial in
its absence. Let us consider the phase corresponding to
ν ¼ 2. A representative model in this phase is two copies of
Kitaev’s Majorana chain [34,35]. Using a local change of
basis [36], for a system of size L, the Hamiltonian and
symmetry operators (time reversal, T and fermion parity,
Pf) can be written as

H ¼ −i
XL

j¼1

ðγ↑;jγ↓;jþ1 − γ̄↑;jγ̄↓;jþ1Þ;

T ¼ K
YL

j¼1

ðγ↓;jγ̄↑;jÞ; Pf ¼
YL

j¼1

ðiγ̄↓;jγ↓;jÞðiγ̄↑;jγ↑;jÞ: ð1Þ

The Hilbert space on each site consists of two complex
fermions (labeled σ ¼ ↑;↓) and represented using four
Majorana operators ðγσ; γ̄σÞ. We work with a basis such that
γσ are real and symmetric, and γ̄σ are imaginary and
antisymmetric [37]. Under symmetries, the Majorana
operators transform as

T ∶ γσ ↦ τzσσ0γσ0 ; γ̄σ ↦ τzσσ0 γ̄σ0 ; i ↦ −i ð2Þ

Pf∶ γσ ↦ −γσ; γ̄σ ↦ −γ̄σ; i ↦ i; ð3Þ

where, τz is the Pauli-Z matrix. The symmetry operators
satisfy

T 2 ¼ P2
f ¼ 1; T Pf ¼ PfT ð4Þ

and generate a ZT
2 × Zf

2 group. With open boundary
conditions, we get a pair of unpaired Majorana
modes on each end, as shown in Fig. 1, which results in
a fourfold ground state degeneracy. We can now
consider the time-reversal and fermion parity operators
restricted to the Hilbert space of one of the boundaries
(say left):

T̂ ¼ Kγ; P̂f ¼ iγ̄γ: ð5Þ

We have relabeled the boundary modes γ↓;1 ≡ γ, γ̄↓;1 ≡ γ̄
for convenience. Throughout this Letter, we use operators
with a hat to label boundary operators (symmetry and
Hamiltonian) to distinguish them from those in the bulk. It

can be checked that the boundary symmetry generators
satisfy

T̂ 2 ¼ P̂2
f ¼ 1; T̂ P̂f ¼ −P̂fT̂ ; ð6Þ

and thus form a nontrivial projective representation [38] of
the bulk ZT

2 × Zf
2 group Eq. (4). The action of symmetries

on the boundary operators is

T̂ ∶ γ ↦ þγ; γ̄ ↦ þγ̄; i ↦ −i ð7Þ

P̂f∶ γ ↦ −γ; γ̄ ↦ −γ̄; i ↦ i; ð8Þ

and the only possible boundary Hamiltonian consistent
with symmetries is

Ĥ ¼ c1; ð9Þ

where c is a real number which we choose to be positive
without any loss of generality. Observe that the spectrum of
Eq. (9) has a Bose-Fermi degeneracy consisting of one
bosonic (P̂f ¼ þ1) and one fermionic (P̂f ¼ −1) eigen-
state with the same energy (E ¼ c). This is a consequence
of the fact that the boundary time-reversal operator anti-
commutes with fermion parity. We can define two
Hermitian supercharges, Q̂þ ≡ ffiffiffi

c
p

γ and Q̂− ≡ ffiffiffi
c

p
γ̄ which

satisfy the N ¼ 2 SUSY QM algebra,

fQ̂α; Q̂βg ¼ 2Ĥδαβ; ½Ĥ; Q̂α� ¼ fP̂f; Q̂αg ¼ 0: ð10Þ

The action of time reversal on the supercharges can also be
determined and is best seen on the complex supercharges,
Q≡ Q̂þ þ iQ̂− and Q̄≡ Q̂þ − iQ̂−,

T̂ ∶
�
Q

Q̄

�
↦

�
Q̄

Q

�
: ð11Þ

Remarkably, this emergent SUSY is a feature of any
member of the ν ¼ 2 phase, not just the model of
Eq. (1). To see this, let us consider a model in the same
phase with a more complex boundary Hilbert space.
The Z8 classification [13,14] tells us that we can stack
an additional 4N copies of the Hamiltonian of Eq. (1) onto
the original one without changing the phase of matter.
Doing this gives us the following Hamiltonian and sym-
metry operators:

H ¼ −i
XL

j¼1

X4Nþ1

a¼1

ðγ↑;a;jγ↓;a;jþ1 − γ̄↑;a;jγ̄↓;a;jþ1Þ; ð12Þ

T ¼ K
Y4Nþ1

a¼1

YL

j¼1

ðγ↓;a;jγ̄↑;a;jÞ; ð13ÞFIG. 1. Schematic representation of the Hamiltonian in Eq. (1)
with ZT

2 × Zf
2 symmetry.
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Pf ¼
Y4Nþ1

a¼1

YL

j¼1

ðiγ̄↑;a;jγ↑;a;jÞðiγ̄↓;a;jγ↓;a;jÞ: ð14Þ

The action of symmetry on the Majorana operators is the
same as shown in Eqs. (2) and (3). With open boundary
conditions, as shown in Fig. 2, the Hilbert space on the left
end now consists of 8N þ 2 unpaired Majorana operators
ðγ1;…; γ4Nþ1; γ̄1;…; γ̄4Nþ1Þ. We have again relabeled the
boundary modes γ↓;a;1 ≡ γa, γ̄↓;a;1 ≡ γ̄a for convenience.
The boundary symmetry generators as well as their action
on boundary Majorana operators are

T̂ ¼ K
Y4Nþ1

a¼1

γa; P̂f ¼
Y4Nþ1

a¼1

iγ̄aγa; ð15Þ

T̂ ∶ γa ↦ þγa; γ̄a ↦ þγ̄a; i ↦ −i; ð16Þ

P̂f∶ γa ↦ −γa; γ̄a ↦ −γ̄a; i ↦ i: ð17Þ

It can be checked that T̂ and P̂f form the same projective
representation as Eq. (6). However, the symmetry-allowed
boundary Hamiltonian can be more complex and can
include any operator consisting of Majoranas coupled in
multiples of four (quartic, octonic, …):

Ĥ ¼
X

a;b;c;d

J1abcdγaγbγcγd þ J2abcdγ̄aγbγcγd þ…

X

a;b;c;d;e;f;g;h

K1
abcdefghγaγbγcγdγeγfγgγh þ… ð18Þ

With only quartic couplings and Jαabcd chosen from a
random distribution, this is the Sachdev-Ye-Kitaev
(SYK) model [39–41]. The projective boundary symmetry
representation Eq. (6) again enforces the spectrum to have
Bose-Fermi degeneracy. To see this, observe that if jμ;þi is

some bosonic eigenstate with a nonzero eigenvalue Eμ,
Eq. (6) ensures that jμ;−i ¼ T jμ;þi is a fermionic
eigenstate with the same eigenvalue. This means, in the
absence of any other accidental degeneracies (ensured by
Jαabcd etc. being sufficiently random), the Hamiltonian of
Eq. (18) can be written in diagonal form as

Ĥ ¼
X

μ

Eμðjμ;þihμ;þj þ jμ;−ihμ;−jÞ;

Ĥjμ;�i ¼ Eμjμ;�i; P̂fjμ;�i ¼ �jμ;�i: ð19Þ

If we shift energies so as to ensure all Eμ are positive, as
shown by Behrends and Béri [42], we can again define two
supercharges

Q̂þ ¼
X

μ

Q̂μ þ Q̂†
μ; Q̂− ¼

X

μ

iðQ̂μ − Q̂†
μÞ;

where; Q̂μ ¼
ffiffiffiffiffiffi
Eμ

p jμ;þihμ;−j; ð20Þ

which generate the same N ¼ 2 SUSY QM algebra as
Eq. (10) as well as the action of time-reversal symmetry on
the supercharges shown in Eq. (11). A similar story also
exists for the ν ¼ 6 phase generated by 4N þ 3 copies of
Hamiltonian Eq. (1) whose boundary also corresponds to a
N ¼ 2 SUSY QM system but with a different action of
symmetries.
The fact that the SYK model can serve as a boundary

Hamiltonian for topological superconductors was pointed
out by You, Ludwig, and Xu [39] and the SUSY nature of
the “standard” SYK model was recently studied by
Behrends and Béri [42]. The main result of this work is
a proof that this is true of all systems belonging to all
nontrivial ð1þ 1ÞD intrinsically fermionic SPT phases
protected by any finite on-site symmetry, irrespective of
the choice of boundary Hamiltonians.
Proof of the general theorem.—We now prove the main

theorem of this Letter:
Any boundary Hamiltonian of a system belonging to a

nontrivial ð1þ 1ÞD SPT phase protected by finite on-site
unitary or antiunitary symmetries can be expressed as a
supersymmetric quantum mechanical system if and only if
the SPT phase is intrinsically fermionic.
Let us first carefully state the setting we are considering

and clarify some terminology. By nontrivial ð1þ 1ÞD SPT
phases, we mean classes of Hamiltonians in one spatial
dimension which have a unique ground state with closed
boundary conditions but have ground state degeneracies in
the presence of any open boundary conditions preserving
symmetry. If the global symmetries are explicitly broken,
the boundary can be gapped and the phase becomes trivial.
We are interested in fermionic systems whose total sym-
metry group Gf consists of fermion parity Pf ≡ ð−1ÞNf

which commutes with all other symmetry operators. In
other words, Zf

2 ≅ f1; Pfg is in the center of the

FIG. 2. Schematic representation of the Hamiltonian in Eq. (12)
with ZT

2 × Zf
2 symmetry.
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groupGf [43]. We also define the bosonic symmetry group

as the quotientGb ≅ Gf=Z
f
2 [44]. We assume thatGf forms

a finite group and all operators in Gf, which can be unitary
or antiunitary, are on site [12], i.e., can be written as a
product of operators which act on a finite number of local
degrees of freedom, possibly followed by complex con-
jugation. The boundary symmetry operators of such an SPT
phase, Ĝf forms a projective representation of Gf and is
classified by the second group cohomology group
H2ðGf;Uð1ÞTÞ [13,45–47] which in turn also classifies
the ð1þ 1ÞD fermionic SPT phase [48]. A SPT phase is
intrinsically fermionic unless the classification reduces to
H2ðGb;Uð1ÞTÞ [12] in which case the phase can be thought
of as a nontrivial bosonic SPT phase stacked with trivial
gapped fermions.
To begin, let us consider a HamiltonianH belonging to a

nontrivial SPT phase protected by total symmetry Gf. This
means that the boundary symmetry operators Ĝf are
projectively realized which forbids any boundary
Hamiltonian Ĥ invariant under Ĝf from acquiring a unique
ground state invariant. We prove the main theorem in two
steps: (I) We prove that a SPT phase is not intrinsically
fermionic if and only if P̂f commutes with all elements of
Ĝf. (II) We prove that if P̂f does not commute with all
elements of Ĝf, then Ĥ is supersymmetric.
Proof of (I).—We first prove this using the formal results

of classification of fermionic SPT phases [45–47,49–51]
and then provide a physical interpretation.
The classification of fermionic SPT phases, given by

H2ðGf;Uð1ÞTÞ, can be specified by two pieces of data—α
and β (see Refs. [45–47] for details). If and only if
β ∈ H1ðGb;Z2Þ is trivial, the classification reduces to
α ∈ H2ðGb;Uð1ÞTÞ and the phase is not intrinsically
fermionic. Now, β, which assigns a Z2 element (either 0
or 1) to each element of Gb also encodes the action of
fermion parity on each operator V̂g ∈ Ĝf [47].

P̂fV̂gP̂
−1
f ¼ ð−1ÞβðπðgÞÞV̂g: ð21Þ

Here, π is the surjective map from the elements of the group
g ∈ Gf to the quotient Gb ≅ Gf=Z

f
2 . Now, if β is trivial,

i.e., assigns 0 to every element of Gb, we see from Eq. (21)
that this precisely means that fermion parity commutes with
all elements of Ĝf. Furthermore, the argument also works
in reverse—if P̂f commutes with all the elements of Ĝf,
Eq. (21) tells us that β must be trivial and the SPT phase is
not intrinsically fermionic.
Let us now understand what this means physically. If the

boundary fermion parity P̂f commutes with all other
elements of Ĝf, we can simply add P̂f to the boundary
Hamiltonian, Ĥ without breaking any symmetries to get

ĤðλÞ ¼ Ĥ − λP̂f: ð22Þ

Now, we can take λ to be large and positive so as to ensure
that the low energy states are all bosonic, i.e., have
Pf ¼ þ1. The effective representation of symmetry
generators on this low energy bosonic subspace is
Ĝb ≅ Ĝf=Z

f
2 . Since the SPT phase is assumed to be

nontrivial, the projection of ĤðλÞ to the Pf ¼ þ1 sector
cannot have a unique ground state. This means Ĝb is a
projective representation classified by some nontrivial
element of H2ðGb;Uð1ÞTÞ. Thus, the SPT phase is not
intrinsically fermionic.
Proof of (II).—Recall that the fermion parity P̂f grades

operators as bosonic or fermionic,

P̂fÔbP̂
−1
f ¼ þÔb; P̂fÔfP̂

−1
f ¼ −Ôf: ð23Þ

We will assume that the symmetry operators of Ĝf all have
definite fermion parity, i.e., are either bosonic or fermionic.
This is indeed the case for projective representations of
fermionic symmetries as shown in Eq. (21) [45–47]. If P̂f

does not commute with all symmetry operators and there
exist some symmetry operators V̂g that anticommute with
P̂f, the eigenstates of any Hamiltonian Ĥ invariant under
V̂g with nonzero eigenvalues has Bose-Fermi degeneracy
similar to Eqs. (9) and (18). To see this, observe that if jμi is
a bosonic eigenstate with nonzero eigenvalue Eμ, V̂gjμi is a
fermionic eigenstate with the same eigenvalue. In diagonal
form, Ĥ can be written as

Ĥ ¼
X

μ;aμ

Eμðjμ; aμ;þihμ; aμ;þj þ jμ; aμ;−ihμ; aμ;−jÞ;

Ĥjμ; aμ;�i ¼ Eμjμ; aμ;�i; P̂fjμ; aμ;�i ¼ �jμ; aμ;�i:

The label aμ keeps track of additional degeneracies of Eμ

arising from the specific nature of the symmetries (e.g.,
Kramers degeneracy, non-Abelian symmetries, etc.). After
shifting energies to make all Eμ positive, we can always
define at least two supercharges:

Q̂þ ¼
X

μ

Q̂μ þ Q̂†
μ; Q̂− ¼

X

μ

iðQ̂μ − Q̂†
μÞ;

where; Q̂μ ¼
X

aμ

ffiffiffiffiffiffi
Eμ

p jμ; aμ;þihμ; aμ;−j; ð24Þ

which satisfy the N ¼ 2 SUSY algebra of Eq. (10). We
stress that we cannot rule out the possibility of a larger
number of supercharges.
Contraposing (I), we can establish that a SPT phase is

intrinsically fermionic if and only if the boundary fermion
parity P̂f does not commute with all boundary symmetry
operators. Combined with (II), this implies that the
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boundary Hamiltonian, Ĥ is a supersymmetric quantum
mechanical system. This completes the proof.
Comments.—We briefly comment on how our results

relate to existing ones. First, we note that the manifestation
of the boundary anomaly of SPT phases in the form of
spectral degeneracies is well known. While for bosons, the
boundary degeneracy corresponds to fractional quantum
numbers [5] or Kramers doublets [52], for intrinsically
fermionic systems, the degeneracy is different and of the
Bose-Fermi kind discussed above. When the system
possesses time-reversal symmetry, this degeneracy is some-
times referred to as fermionic Kramers doublets [53]
and in Ref. [25], this degeneracy is itself referred to as
supersymmetry.
The main result of our Letter is the proof of the existence

of supercharges which generate a SUSY algebra. This has
not been identified before to the best of our knowledge. In
addition to producing the Bose-Fermi spectral degeneracy,
SUSY can constrain the dynamics of the system and
imprint signatures in static and dynamical correlation
functions [42,54]. We leave the study of these conse-
quences for future work.
Summary and outlook.—We have described a general

setting for the emergence of supersymmetric quantum
mechanics. Since this applies to a large class of physical
systems belonging to several phases with no fine-tuning,
we expect it is a promising avenue for experimental
detection of SUSY in cold-atom as well as condensed
matter systems. Our work also opens up several questions
for theoretical investigation. First, we expect that some
version of emergent SUSY should also be present on the
boundaries of invertible phases which are nontrivial even in
the absence of global symmetries; for example, the ν ¼ 1
member of ð1þ 1ÞD time-reversal invariant topological
superconductors [13] to which Kitaev’s Majorana chain
[34] belongs. However, the unusual boundary Hilbert space
of such phases demands a more careful investigation. Next,
it is interesting to see how these results generalize to higher
dimensions. While signatures of boundary SUSY (such as
Bose-Fermi degeneracy) can be established in several
higher dimensional examples, a general proof is currently
lacking. It is also interesting to connect these results to the
symmetry-extension framework of Ref. [10] as well as
unwinding of SPT phases [36] in general dimensions. The
one-dimensional case was recently studied in Ref. [55].
Finally, the emergence of space-time SUSY on the boun-
dary of topological phases has been investigated, first by
Grover, Sheng, and Vishwanath [23] and subsequently
others [27–29], when the boundary is tuned to criticality. It
would be interesting to see in what way their results are
related to ours. We leave these questions for future work.
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