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Using the Deep Potential methodology, we construct a model that reproduces accurately the potential
energy surface of the SCAN approximation of density functional theory for water, from low temperature
and pressure to about 2400 K and 50 GPa, excluding the vapor stability region. The computational
efficiency of the model makes it possible to predict its phase diagram using molecular dynamics.
Satisfactory overall agreement with experimental results is obtained. The fluid phases, molecular and ionic,
and all the stable ice polymorphs, ordered and disordered, are predicted correctly, with the exception of
ice III and XV that are stable in experiments, but metastable in the model. The evolution of the atomic
dynamics upon heating, as ice VII transforms first into ice VII00 and then into an ionic fluid, reveals that
molecular dissociation and breaking of the ice rules coexist with strong covalent fluctuations, explaining
why only partial ionization was inferred in experiments.
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The phase diagram of water is extremely rich. In the
temperature and pressure domain with T ⪅ 400 K and
P ⪅ 50 GPa, there are ten stable phases, nine solid (ice
Ih, II, III, V, VI, VII, VIII, XI, and XV) and one liquid, in
addition to five metastable phases (ice IV, IX, XII, XIII, and
XIV) [1–3]. This large variety of structures are made
possible by hydrogen bonded arrangements of the mole-
cules. In ice, the oxygen sublattice is crystalline, but the
hydrogen sublattice can be either ordered or disordered,
due to the vast number of nearly degenerate hydrogen
(proton) configurations allowed by the ice rules. The
corresponding configurational or residual entropy stabilizes
disordered polymorphs at high temperature. Thus, near
melting, all the stable phases are disordered (ice Ih, III, V,
VI, and VII). In ice Ih, VI, and VII, disorder is complete
and the residual entropy is well approximated by
kB ln 1.5 ≈ 0.4055kB=H2O [4]. In ice III and V, disorder
is partial [5,6] and the entropy is less than Pauling’s
estimate but still significant [7]. Upon cooling, ice Ih,
VI, and VII become less stable than their ordered counter-
parts, ice XI [8], XV [3], and VIII [9], respectively. Ordered

polymorphs are ferroelectric (XI) or antiferroelectric
(II, XV, and VIII). Interestingly, ice II does not have a
disordered counterpart. See, e.g., Ref. [10] for a review of
ice polymorphism.
At high pressure, the stability of the solid phases extends

to higher temperatures, the hydrogen bonds weaken, and
molecular dissociation into ions is promoted by the increas-
ing thermal fluctuation. Molecular to ionic transformation is
continuous in the fluid. In the solid, for T⪆850 K and
pressures above ≈14 GPa, ice VII transforms into ice VII00, a
superionic phase in which the BCC oxygen sublattice of ice
VII coexists with mobile protons. Upon further heating, ice
VII00 melts into an ionic fluid [11–15].
Molecular dynamics (MD) simulations give microscopic

insight into the water phases and complement experiments
with atomistic details [16–22]. The key ingredient of MD is
the potential energy surface (PES), which can be con-
structed either by fitting a physically motivated force field
to experiment, or, nonempirically, from quantum theory
[ab initio MD (AIMD)]. Comparing the phase diagram
predicted by MD to experiment is the ultimate accuracy test
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of a model PES. Because of the high computational cost of
AIMD, extensive studies of the water phase diagram have
only been possible so far with empirical force fields, which,
however, face severe difficulties with the ionic phases. By
contrast, in AIMD, the PES is constructed on the fly from
density functional theory (DFT) and can describe molecular
dissociation processes. Indeed, this approach has been
particularly useful in modeling proton transfer in the liquid
at ambient conditions [23,24], or the superionic ice phases
at high pressure and temperature [14].
Advances in machine learning (ML) are making possible

MD simulations of ab initio quality at a cost of empirical
force fields. Applications to water studied the phase
behavior at ambient [25,26] and deeply undercooled [27]
conditions, isotopic effects [26,28,29], infrared and Raman
spectra [30–33], etc. A recent calculation reported the
phase diagram in the (T, P) range from 150 to 300 K and
from 0.01 to 1 GPa, at the hybrid DFT level, including
nuclear quantum effects [34]. However, to the best of our
knowledge, no attempt has been made to describe water in a
wide thermodynamic range including ordered and disor-
dered ice, superionic ice, molecular and ionic fluid phases.
Here this goal is achieved with deep potential molecular

dynamics (DPMD) [35,36], using an iterative concurrent
learning scheme, deep potential (DP) generator [37,38], to
construct the PES with SCAN-DFTas the reference. SCAN
[39] is a nonempirical functional that describes well several
properties of water [40]. We find that a unique DP model
can reproduce closely DFT in a vast thermodynamic range,
extending from ambient pressure to ≈50 GPa and from
≈50 to ≈2000 K, excluding the vapor stability region.
DPMD predicts the stable phases, including ordered,
disordered, and superionic ices, as well as molecular and
ionic fluid phases. Overall, the phase diagram agrees well
with experiment, further validating the quality of the SCAN
approximation. In the high ðT; PÞ region the simulations
reveal key features of the temperature induced transitions
from ice VII to ice VII00 and from the latter to an ionic fluid.
To construct the model PES, a trial DP is built from

configurations of the liquid, at ambient conditions, and of
all the experimentally known stable and metastable ice
polymorphs for P ⪅ 50 GPa (Ih, Ic, II, III, IV, V, VI, VII,
VIII, IX, XI, XII, XIII, XIV, XV). The model is used by a
DP generator to explore a wide region of the phase space
with isothermal-isobaric (NPT) DPMD trajectories. The
protocol is iterated to refine the model with new DFT data
until satisfactory accuracy is achieved. The visited states
can be roughly classified into three groups: the low pressure
(A), the high pressure (B), and the superionic group (C).
Group (A) includes states in the range 50 ≤ T ≤ 600 K and
10−4 ≤ P ≤ 5 GPa, starting from configurations of the
fluid and of all the ices except VII and VIII. Group
(B) includes states in the range 50 ≤ T ≤ 600 K and
0.1 ≤ P ≤ 50 GPa, starting from configurations of ice
VII and VIII. Group (C) includes states in the range

200 ≤ T ≤ 2400 K and 1 ≤ P ≤ 50 GPa, starting from
ice VII and the fluid. DPMD trajectories sample almost
uniformly the thermodynamic domains of the three groups.
The deviation in the predicted forces within a set of
representative DP models is used to label configurations
for which new DFT calculations of the energy, forces, and
virial are necessary. The new data are added to the training
dataset and serve to refine the representative DP models
entering the next iteration.
After 36 concurrent learning iterations the error in the

force is satisfactorily reduced and the procedure ends
(details in the Supplemental Material [41], Sec. SI A).
The accumulated number of snapshots in the training
dataset is 31058, a tiny fraction (∼0.05%) of the configu-
rations visited by DPMD. At this point, the relative energies
of configurations within each phase are well described,
but deviations from DFT still affect the averages.
To reduce these deviations below a small threshold,
3519 additional training configurations are necessary
(Supplemental Material [41], Fig. S1). The dataset is
publicly available online [47].
The Vienna ab initio simulation package (VASP) version

5.4.4 [48,49] is used for the DFT calculations. DeePMD-kit
[50] is used for DP training and for running DPMD,
interfaced with LAMMPS [51]. DP-GEN [38] is used
for the concurrent learning process. See details in the
Supplemental Material [41].
Accuracy of the DP model.—The error relative to DFT is

quantified with an independent testing dataset including
5141 configurations along 67 isothermal-isobaric DPMD
trajectories spanning the relevant thermodynamic domain
(Supplemental Material [41], Fig. S2). In most cases, the
root mean square error (RMSE) of energy and force is
∼1 meV=H2O and ∼50meV=Å, respectively. Larger abso-
lute errors may be possible at high temperature, but since
thermal fluctuations are large, the relative RMSE is still
of ∼10% or less.
Phase diagram. Thermodynamic integration is used to

compute the absolute Gibbs free energy of a single state
point of each phase [52,53]. The algorithm of Ref. [54] is
used to generate the fully disordered structures of ice Ih, IV,
VI, and VII, and Pauling’s residual entropy contribution
(0.4055kB=H2O) is added to their free energy. For the
partially disordered structures of ice III and V and the
corresponding entropies we follow Ref. [7]. To minimize
finite size effects we use cells with at least 128 molecules.
Taking into account finite size, entropy approximation, DP
error, and statistical uncertainty we estimate that the free
energy error should be approximately 1 meV=H2O. Then,
using thermodynamic integration with the composite
Simpson rule we trace a family of curves representing
the variation with pressure along an isotherm, or with
temperature along an isobar, of the free energy of each
phase. The intersections between pairs of curves define
phase coexistence points. Finally, the phase boundary lines
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stemming from the coexistence points are traced by
integrating the Gibbs-Duhem equation [55] with a second
order Runge-Kutta method. See Supplemental Material
[41], Sec. SIII A.
The numerical accuracy of the predicted phase bounda-

ries can be gauged from the consistency of the predicted
triple points (TPs). Each TP can be inferred in three
independent ways from the intersection of two boundary
lines between the three coexisting phases. The average of
these estimates defines a TP, and the standard deviation
gives the estimated error. From the TPs in Supplemental
Material [41], Table SV, we infer that the numerical
uncertainty of the calculated phase boundaries is less than
5 K in temperature and less than 0.02 GPa in pressure.
Overall, the DP phase diagram in Fig. 1(a) agrees well

with experiment. All the stable ice phases are predicted
correctly, with two exceptions, ice III and XV, which are
metastable in the DP model. The Ih-F coexistence line is
displaced by ≈40 K to higher temperature than experiment,
while the Ih-II line is displaced by ≈0.02 GPa to higher
pressure than experiment. Thus, the stability of Ih is
overestimated, consistent with the tendency of the
SCAN approximation to overestimate the hydrogen bond
strength [40]. On the other hand, the Ih-XI boundary is
predicted correctly, reflecting the close similarity of the
hydrogen bond configurations in the two systems. The shift
to higher pressure of the Ih-II boundary may contribute to

the metastability of ice III. The metastability of ice XV may
reflect a general difficulty of gradient corrected functionals
to predict the ground state structure of this ice form [3].
Within the accuracy of the DP model, competing phases
differing in free energy by ⪅ 1 meV=H2O should be
considered degenerate. This happens to IV and VI in part
of the stability domain of the latter (Supplemental Material
[41], Sec. SIII B). The coexistence lines for P⪆1 GPa
including the ice-fluid boundary, the VII-VII00 boundary,
and the VII-VII00-F TP are also in good qualitative agree-
ment with experiment. At pressures higher than reported in
Fig. 1, ice VII transforms into ice X [56]. This regime is
beyond the domain of validity of the present DP model and
is not investigated.
It is instructive to compare the DP phase diagram with

the one derived from one of the most accurate empirical
water models, TIP4P=2005 [17], which assumes rigid
molecules and is parametrized with experimental observa-
tions, such as, e.g., the temperature of maximal liquid
density at ambient pressure, the densities of ice II, III, and
V at different thermodynamic conditions, etc. As shown in
Fig. 1(b), TIP4P=2005 works well at low and intermediate
pressures. At higher pressures, however, significant devia-
tions from experiment affect the boundary lines between ice
VIII, VII, and VI. Moreover, the rigid molecule approxi-
mation does not allow ionized water configurations. At
high pressure and temperature TIP4P=2005 predicts a first-
order transition from ice VII to a plastic phase, in which the
BCC oxygen sublattice coexists with freely rotating mol-
ecules [61,62]. No experimental evidence has been found
so far for this phase, nor was such behavior observed in our
DP simulations.
Ionic phases.—According to the DP model, at low T, ice

VII is a molecular crystal with full proton disorder and
insignificant atomic diffusion. Upon heating, however,
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H diffusion grows exponentially with T, while O diffusion
remains insignificant. This behavior is illustrated in
Fig. 2(a) for the isobar at 30 GPa. Eventually H diffusion
saturates and remains approximately constant over a finite
T interval. At even higher T the diffusivities of H and O
jump to distinct macroscopic values signaling transforma-
tion to a fluid. Ice VII has been referred to as ice VII0 and as
ice VII00 in the thermodynamic domains of exponential
growth and saturation of the H diffusivity [14]. The
enthalpy evolution along the 30 GPa isobar is depicted
in Fig. 2(b). It shows a smooth reversible variation in ice
VII0 followed by a more rapid change when ice VII0 turns
into ice VII00. This affects enthalpy and volume, and
occurs spontaneously without apparent hysteresis over
timescales of 100 ps in simulations with 438 molecules.
Simulations with up to 3456 molecules show a sharpen-
ing of the rapid change (Supplemental Material [41],
Fig. S5), as expected of a weakly first-order phase
transition. Since we cannot associate a separate thermo-
dynamic phase to ice VII0, we retain for it the name of ice
VII hereafter and in the phase diagram. The VII-VII00
transition shows the typical behavior of a type II supe-
rionic transition [63,64]. A jump in O diffusivity signals
melting of ice VII00, a transition undetectable by monitor-
ing the enthalpy on timescales of 100 ps in a heat-
until-melt simulation. Thus, to determine the melting
temperature we used a two-phase simulation of 1728
molecules at 50 GPa, and extrapolated the melting
temperature to lower T with Gibbs-Duhem integration.
The predicted VII-VII00-F TP is located at (774 K
10.6 GPa), in relatively good agreement with the most
recent experimental result (850 K 14.6 GPa) [13].
Importantly, the same experiment confirmed the first-
order nature of the VII-VII00 transition, signaled by a
discontinuous change of the lattice parameter in x-ray
diffraction (XRD).

A magnified view of the DP phase diagram in the
VII-VII00-F domain is shown in Fig. 3, together with
experimental and AIMD results. Overall there is good
qualitative agreement: experiments confirm the presence of
two first-order transitions, a solid-solid and a solid-fluid
one. Possibly, the significant scatter in the experimental
data reflects the difficulty of detecting weakly first-order
phase transitions at challenging thermodynamic conditions.
A two-step melting process for ice VII, with a superionic
intermediate, was first proposed in Ref. [11] based on
AIMD simulations. The corresponding solid-solid phase
transition was confirmed experimentally in Ref. [65], with-
out structural details on the new solid phase. These were
provided recently by XRD experiments that verified the
BCC lattice structure of VII00 [13]. The DP results are
in semiquantitative agreement with AIMD simulations
for the VII-VII00 and VII00-F boundaries [14,15,64]. The
differences between DPMD and these earlier studies should
be attributed mainly to the adopted exchange-correlation
functionals and to the relatively small size and timescales of
the AIMD simulations.
DP simulations give insight on the atomistic processes

that underlie the two-step transition from ice VII to ionic
fluid. The O─O, O─H, and H─H pair correlation functions
along the 30 GPa isobar shown in Fig. S4 of the
Supplemental Material [41] illustrate the progressive loss
of long-range order as the system progresses through ice
VII, VII00, and ionic fluid. Interestingly, in spite of the large
diffusivity of H in ice VII00 and of H and O in the fluid, the
running O─H coordination number retains a well-defined
shoulder at a value equal to 2, indicating that strong
covalent fluctuations favoring neutral water molecules
remain effective in the presence of ionization and breaking
of the ice rules. The O sublattice is BCC in ice VII and
VII00. Thus, in ice VII, before the onset of H diffusion each
O has 8 O nearest neighbors along the half-diagonals of a
cube, 4 of which are occupied by an H atom satisfying the
ice rules and 4 of which are empty. Upon heating, ice rule
breaking fluctuations occur, in which the H atoms oscillate
along a bond creating OH−-OHþ

3 defect pairs that either
rapidly recombine or dissociate as the defects move further
apart via Grotthuss-like mechanisms [66]. A rapid increase
of the proton mobility with T follows defect pairs disso-
ciation. This process is accompanied by partial occupation
of the empty O─O bonds due to molecular rotations, which
occur along specific directions and are far from the free
rotations hypothesized for the plastic phase. As a conse-
quence, the H population of the empty bond network
increases, that of the occupied bond network decreases, and
the overall H diffusion increases. The occupation of
interstitial sites outside the bonds remains negligible
throughout. This trend continues until all the O─O bonds
are equally occupied and ice VII transforms to ice VII00, a
process marked by a saturation of the H diffusivity and
a concomitant volume expansion due to diminished
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hydrogen bonding forces. Proton diffusion is associated to
rapid hops along the bonds with Grotthuss-like mecha-
nisms not only in ice VII00 but also in the ionic fluid. The
average population of ionic defects at 30 GPa is approx-
imately 7.0% at 1250 K in ice VII00, and becomes 10.8% at
1450 K in the fluid. Thus, full ionization is never achieved
at these pressures, in agreement with experiment [67].
In conclusion, we have shown that DP has made it

possible to predict the phase diagram of water from ab initio
quantum theory, over a vast range of temperatures and
pressures. With further training the potential constructed
here could be extended to other thermodynamic conditions,
including the vapor and phases at higher temperatures
and pressures. Extensions to model solutions and interfacial
water [68–70] are also possible. Competing stable and
metastable phases may have free energies within
1 meV=H2O or less, posing a severe challenge both to
the accuracy required from the reference quantum model,
and to the faithfulness of its neural network representation.
Here we adopted the SCAN approximation of DFT in view
of its good balance of efficiency and accuracy, but more
accurate functional approximations and/or higher level
quantum chemical methods would be possible, in principle.
Finally, the present study was entirely based on classical
MD simulations, but it is known that nuclear quantum
effects are responsible for the observed isotopic shifts in the
thermodynamic properties of water. These shifts are typ-
ically smaller than the deviations from experiment of the
present classical formulation. In future studies one can
include these effects using path integral MD methods, as
done, e.g., in Refs. [26,29,34].
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