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While the drop impact dynamics on stationary surfaces has been widely studied, the way a drop impacts
a moving solid is by far less known. Here, we report the physical mechanisms of water drops impacting on
superhydrophobic surfaces with horizontal motions. We find that a viscous force is created due to the
entrainment of a thin air layer between the liquid and solid interfaces, which competes with the capillary
and inertia forces, leading to an asymmetric elongation of the drop and an unexpected contact time
reduction. Our experimental and theoretical results uncover consolidated scaling relations: the maximum
spreading diameter is controlled by both the Weber and capillary numbers Dmax=D0 ∼We1=4Ca1=6, while
the dimensionless contact time depends on the capillary number τ=τ0 ∼ Ca−1=6. These findings strengthen
our fundamental understandings of interactions between drops and moving solids and open up new
opportunities for controlling the preferred water repellency through largely unexplored active approaches.
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One of the most landmark properties of water repellant
surfaces is that the impacting droplet can bounce off easily,
either going through a typical spreading and retraction
stage or exhibiting a pancake shape [1–3]. The impinging
drop usually manifests a remarkable elasticity because of
the negligible viscous dissipation caused by the hydro-
phobic roughness trapped underlying the impinging drop,
which is directly related to various potential applications
[4–11]. Note that the drop retains a symmetric shape during
the whole impinging process. The contact time τ0, defined
as the period from the moment the drop first contacts the
surface to its complete detachment, is reported to be
independent of the impact velocity and depends on the
inertia-capillary time scaled as τ0 ∼ ðρΩ0=γÞ1=2, where ρ,
Ω0, and γ are the mass density of the liquid, drop volume,
and liquid-vapor surface tension, respectively [1]. This
contact time is different from that on hot plates explored by
Lee et al. [12] who distinguished the actual contact time
from the time until the drop lifts off from the substrate. For
the contact time controls the extent to which mass,
momentum, and energy are exchanged between the drop
and the substrate; and thus, contact time minimization is
highly desirable in practical settings [6,7,13].
Remarkably, several attempts have been made to rectify

the drop impact dynamics to lower the solid-liquid inter-
action on stationary surfaces, including asymmetric bounc-
ing, pancake bouncing, and so on [2,3,13–16]. Here, we
consider the situation of drops impinging on a surface with
horizontal motion, on which the drop exhibits an asym-
metrical bouncing process and a remarkably reduced
contact time. This scenario with active regulation of drop

rebounding dynamics is omnipresent in nature and emerg-
ing technological entities, such as anti-icing on high-speed
flying aircraft and spinning wind turbine blades [17,18],
rather than its stationary counterpart. Although drop
impacting phenomena on moving hydrophilic and hydro-
phobic substrates have been reported very recently [18–21],
in this Letter, we devote attention to revealing the under-
lying physics accounting for three fundamental questions:
how the impact velocity and the substrate velocity affect the
contact time, contact region, and horizontal displacement of
the drop.
We consider a water drop impinging on a rotating

superhydrophobic aluminum disk [Fig. 1(a)]. As shown
in the scanning electron microscopic (SEM) image in
Fig. 1(b), the surface is covered by steps and pits built
up by millions of facets of a few microns and with an
apparent water contact angle over 165° [Fig. 1(b), inset].
Details of the surface preparation and experimental pro-
cedure are shown in the Supplemental Material [22]. The
disk is entrained by a stepper motor. The angular velocity ω
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FIG. 1. (a) Schematic of the experimental setup. Awater drop is
deposited on a disk rotating at an angular velocity ω. (b) SEM
image of the surface.
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ranges from 0 to 180 rad=s, corresponding to a horizontal
velocity V ¼ Lω ranging from 0 to 3.6 m=s, where
L ¼ 2 cm is the distance from the impact point to the disk
center. The drop dynamic behavior is simultaneously
filmed from side and top views using two synchronous
high-speed cameras.
Figure 2(a) shows the side and top views of a water drop

with diameter D0 ¼ 3.0 mm impinging on a stationary
superhydrophobic surface atU ¼ 0.89 m=s, corresponding
to We ¼ 32.9, where We ¼ ρU2D0=γ is defined as the
Weber number with ρ ¼ 998 kg=m3 and γ ≈ 0.073 N=m.
The drop retains a circular symmetry during the bouncing
process, and the contact time is 18.1 ms (Movie S1, right
column [22]).
However, on the moving surface, as shown in Fig. 2(b),

the drop exhibits a distinctively different bouncing dynam-
ics, as exemplified by an impact at We ¼ 32.9 and
V ¼ 1.41 m=s. A first striking observation is the asym-
metrical spreading of the drop over the surface, resulting in
an elongated and asymmetric outline (Movie S1, left
column and Movie S2 [22]). The drop expands in all
directions at the very initial stage (t < 2 ms) and then
(t ≈ 4.1 ms) the lamella tail (left) stops expanding, but the
lamella front (right) continues to stretch along with the
surface movement. Such movement keeps the lamella’s
front far from the bulk of the liquid where it starts to dewet
from the surface at the earliest moment. After the recoiling
of the drop, it entirely takes off at τ ¼ 13.7 ms, which is
∼25% shorter than that on stationary surfaces. Note that, in
particular, the drop bounces off and is translated horizon-
tally with a displacement d between the impact point and
the point where the drop rebounds away from the surface
[Fig. 2(b)]. An increase of V results in a more prominent
asymmetrical spreading of the drop and a larger lamella

front, which is always the first to bounce (Fig. S1 and
Movie S3 [22]).
Figure 3(a) shows the time evolution of the spreading

length, defined as the width of the drop in a certain
direction, on the moving surface with V ¼ 1.41 m=s and
a stationary surface, respectively, under We ¼ 32.9. It is
apparent that an impinging drop experienced an asymmet-
ric spreading and retraction on the moving surface.
Specifically, the maximum spreading length of the drop
in the direction perpendicular to the surface motion (blue
hollow circles) at 4.1 ms is 6.3 mm, which is close to its
symmetric stationary counterpart (black squares), however,
the liquid in the horizontal direction (red solid dots)
continues to spread. Once the fluid in the direction
perpendicular to the surface motion completes its retraction
[Fig. 2(b)], the drop detaches from the surface in a
deformed shape at ∼13.7 ms.
Figure 3(b) shows the variation of the contact time τ as a

function of V under various We, where τ decreases with V
but has a weak dependence on We. This behavior is
replotted in Fig. 3(c) (a normalized plot of Fig. S2 [22]),
which is consistent with the classic result on stationary
surfaces that τ0 is independent of We [1]. Figures 3(b)
and 3(c) suggest that the contact time is mainly modulated
by the surface moving velocity. To further elucidate the
dependence of the contact time τ on the surface velocity, we
decompose it into the spreading time τs and retraction time
τr, as shown in Fig. 3(d). It is apparent that the spreading
time does not depend on V, in agreement with previous
observation that the spreading is mainly dominated by the
inertia [23,24]. However, the retraction time strikingly
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FIG. 2. (a) Selected snapshots showing a drop impinging on a
stationary superhydrophobic surface (We ¼ 32.9). The drop
detaches from the surface at 18.1 ms. (b) Selected snapshots
showing a drop impinging on a moving superhydrophobic
surface at V ¼ 1.41 m=s (We ¼ 32.9). The drop bounces off
at 13.7 ms with a horizontal displacement d.
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FIG. 3. (a) Spreading length over time in the directions
perpendicular and parallel to the surface motion at V ¼
1.41 m=s under We ¼ 32.9. The drop spreading length under
the same We on the stationary surface is presented for compari-
son. (b) Variation of the contact time τ as a function of V.
(c) Variation of the normalized contact time τ=τ0 as a function of
We. (d) Variation of the spreading time τs (hollow dots) and
retraction time τr (solid dots) with V.
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decreases with the surface velocity: for V ¼ 1.41 m=s and
We ¼ 32.9, the decrease in τr compared with the stationary
surface is ∼40%.
To elucidate how the moving surface reduces the contact

time, first, we consider the deformation of the drop in the
spreading process. When a drop impacts a stationary
surface, it first spreads to its maximum diameter D0max
[Fig. 2(a)] with a corresponding thickness h0 [Fig. S3(a)
[22] ]. D0max and h0 have been quantified on the basis of a
momentum conservation [24,25]: the reinforced acceler-
ation a ∼U2=D0 exerted on the drop during the impinge-
ment leads to h0 ∼ ½γ=ðρaÞ�1=2 ∼D0We−1=2, thus, a scaling
relation D0max=D0 ∼We1=4 is obtained [25], considering
the volume conservation of the liquid D2

0maxh0 ∼D3
0 ∼Ω0.

This scaling relationD0max=D0 ∼We1=4 is well reproduced
for a substantial range of Weber numbers in our experi-
ments [Fig. S3(b) [22] ]. However, on the moving surface,
as shown in Fig. 2(b), the drop is elongated in the horizontal
direction, and the characteristic maximum diameter
becomes Dmax (Dmax > D0max) with a corresponding
characteristic thickness h (h < h0) [Fig. S4(a) [22] ].
Note that, during the impingement on the moving surface,
the lamella’s front always detaches [e.g., t ¼ 7.4 ms in
Fig. 2(b)] prior to the detachment of its tail. Considering the
earlier detachment of the liquid on the lamella’s front
results in a reduction of the contact volume of the
impinging drop, we define the remaining contact volume
asΩ (Ω < Ω0). Since the maximum spreading length of the
drop along the direction perpendicular to the surface
motion approximates to D0max, as verified by Fig. S5
[22], we have Ω ∼D2

0maxh. The volume conservation
Ω0 ∼D2

0maxh0 ∼D2
maxh leads to Ω ∼Ω0ðD0max=DmaxÞ2.

Further defining a contact time τ ∼ ðρΩ=γÞ1=2 for a drop
impinging on the moving surface, we have

τ

τ0
∼

ffiffiffiffiffiffi
Ω
Ω0

s
∼
D0max

Dmax
: ð1Þ

Indeed, this is observed in Fig. 4(a), where the experi-
mental data is in good agreement with Eq. (1). Note that
this simple idea of reduced contact volume has been widely
applied in explaining the contact time reduction with great
success even for more complex cases, such as substrates
with veins and singularities [3,13,26]. Furthermore, a
combination of Eq. (1) and D0max=D0 ∼We1=4 leads to

Dmax

D0

∼
τ0
τ
We1=4; ð2Þ

which is very well confirmed by Fig. 4(b) over a large range
of the explored surface velocity V and, in turn, supports the
rationality of Eq. (1). The coefficient of Eq. (2) deduced
from the fit in Fig. 4(b) is 0.77� 0.03, which is quite close
to unity.

To further decouple the interplay between the contact
time τ and the maximum diameter Dmax, we uncover the
underlying mechanism along the following line of thought.
Previous studies have indicated that the elongated drop
along the moving direction of the disk is characteristic of
viscous deformation [27]: during the impingement, the
drop is moving on a film of air trapped between the solid
and liquid interfaces, generating a kind of dynamic
Leidenfrost-like phenomenon and large slip [28].
Particularly, the large static contact angle of the super-
hydrophobic surface favors air entrainment. The thickness
of the air film is a result of a balance between viscous
effects and capillarity and obeys the classical Landau-
Levich-Derjaguin (LLD) law δ ∼ lcðηaV=γÞ2=3 ∼ lcCa2=3

for the case of a big drop moving on the superhydrophobic
surface under its own gravity [29]. Here, lc ¼ ½γ=ðρgÞ�1=2 ≈
2.73 mm is defined as the capillary length for water,
in which g ¼ 9.81 m=s2 is the gravity acceleration. Ca ¼
ηaV=γ is defined as the capillary number (Ca), with ηa
being the viscosity of air. Considering the reinforced
acceleration exerted on the impinging drop, the LLD law
becomes δ ∼ h0Ca2=3. Regarding ηa ≈ 18 × 10−6 Pa s and
Ca in our experiments is typically of the order of 10−3, the
thickness of the air film δ is calculated in the order of 1 μm,
which is comparable to the texture height of the super-
hydrophobic surface [27].
The viscous air between the mobile drop and the moving

surface exerts a drag force on the liquid, which can be
approximated as TvD2

max ∼ ηaðV=δÞD2
max, where Tv is the

(a) (b)

(c) (d)

FIG. 4. (a) Normalized contact time τ=τ0 as a function of
D0max=Dmax. The dots with different colors represent different V
ranging from 0 to 2.36 m=s and different U ranging from 0.46 to
1.26 m=s, corresponding to 8.7 < We < 65.2. The red line
having a slope 1. (b) Replot of the data in (a) showing normalized
drop diameter Dmax=D0 as a function of ðτ0=τÞWe1=4. (c),
(d) Relationships between Dmax=D0 and We1=4Ca1=6, and τ=τ0
and Ca−1=6. The solid lines in (c) and (d) are the best fits based on
Eqs. (3) and (4), respectively.
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viscous shear stress of the air flow [30]. The drag force is
then balanced by capillarity, scaling as ðγ=hÞD2

max. Hence,
the force balance becomes ηaV=δ ∼ γ=h. A substitution of
δ ∼ h0Ca2=3, h0 ∼D0We−1=2, and D3

0 ∼D2
maxh into

ηaV=δ ∼ γ=h leads to

Dmax

D0

∼We1=4Ca1=6: ð3Þ

As shown in Fig. S4(b) [22], the maximum diameter
Dmax, indeed, increases with both the impact velocity U
and tangential velocity V. A combination of Eqs. (2) and (3)
leads to

τ

τ0
∼ Ca−1=6: ð4Þ

Equations (3) and (4) suggest that the maximum spread-
ing diameter Dmax of the impinging drop is controlled by
both the Weber and capillary numbers, whereas the contact
time τ is controlled by the surface velocity, which are well
confirmed by the data in Figs. 4(c) and 4(d). The
coefficients of Eqs. (3) and (4) deduced from the fits in
Figs. 4(c) and 4(d) are 4.05 and 0.19, respectively.
Moreover, Eq. (4) and Fig. 4(d) surprisingly reveal that
the independency of the contact time on the impact velocity
U [1] is also applicable for a drop impinging on moving
surfaces. Equation (4) is further verified by a drop
impacting on moving surfaces with different drop sizes,
as shown in Fig. S6 [22]. Further increases of We and Ca
will lead to the drop splash [24,31,32], and an analysis of
this complex scenario is beyond the scope of current
research [20].
Finally, we explore the horizontal displacement d of the

drop translated by the surface motion [Fig. 2(b)]. In fact,
three different forces exert on the drop which could be
responsible for the propulsive movement in the transla-
tional direction. First, one might naturally hypothesize a
Stokes force FS ∼ ηaD0V due to the motion of the drop in
the air. However, such a force is typically 10−2 μN for the
millimeter-size drop in air flowing at V ¼ 1 m=s. Second,
considering the rotation of the disk, the interaction between
the drop and the boundary layer of the air is crucial for the
translating of the drop [33,34]. In this case, Reynolds
number, expressed as Re ¼ ρaD0V=ηa is of the order of
102 for the millimeter-size drop and V ¼ 1 m=s, with the
mass density of air ρa ¼ 1.293 kg=m3. At such a high value
of Re, an inertial force Fa is expected to exert on
the drop, which is characterized as Fa ∼ ρaV2D0Δ∼
ðρaηaLÞ1=2D0V3=2. Here, Δ ≈ 2.5½ηaL=ðρaVÞ�1=2 denotes
the laminar boundary layer of air resulting from the rotation
of the disk. Regarding the horizontal velocity
(0.46 m=s < V < 2.36 m=s) of the contact point, Δ ranges
from 0.86 to 1.95 mm (< D0). Consequently, Fa is
estimated to be a few μN. Last, since air is sheared under

the drop, i.e., δ is a few μm as aforementioned, the
Reynolds number accounting for air motion in the gap
of thickness δ is Re ¼ ρaVδ2=ðηaD0Þ and is estimated of
the order 10−3 for D0 ¼ 3 mm and V ¼ 1 m=s. Thus, a
viscous drag Fv arising from the air moving beneath the
drop scales as Fv ∼ ðηaV=δÞD2

max (with ηaV=δ being the
viscous stress) is exerted over the surface area D2

max of the
base of the impinging drop. Here, Fv is estimated to be of
the order of 100 μN. Compared with Fa and Fv, FS can be
negligible. Then the force F acting on the impinging drop
could be expressed as a combination of Fa and Fv, i.e.,
F ≈ αðηaV=δÞD2

max þ βðρaηaLÞ1=2D0V3=2, where α and β
are numerical coefficients. Hence, the translational dis-
placement d of the drop during the impingement could be
deduced through d ∼ ½F=ðρΩ0Þ�τ2, which is rewritten in
dimensionless form as follows:

d
D0

≈ αWeCa1=3 þ β

�
ρaLγ
η2a

�
1=2

Ca7=6

¼ αWeCa1=3 þ βOh−1Ca7=6; ð5Þ

where Oh ¼ ηa=ðρaLγÞ1=2 is defined as the Ohnesorge
number, which relates the viscous to inertial forces of the
air and the surface tension force of water, and it is a
constant coefficient in our experiments. As shown in Fig. 5,
the lateral distance estimated by Eq. (5) is well consistent
with the experimental data, with α ¼ 0.18 and β ¼ 1.61
being the best fits of the coefficients.
In this Letter, we have experimentally and theoretically

explored the physical mechanisms of drop impingement on
moving superhydrophobic surfaces.We have shown, here,
for the first time, that the dynamic behaviors such as the
reduced contact time, the elongation, and horizontal dis-
tance of the drop can be generalized by simple scaling
relations. The quantitative comparisons with a variety of
experiments suggest that these scaling relations have
successfully captured the competition between the capil-
larity, inertia, and viscous force arising from the air
entrainment between the drop and the substrate, which
makes this work fundamentally distinct from the case of the

FIG. 5. Horizontal displacement d as a function of We and Ca.
The solid line is the best fitting of Eq. (5).
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stationary and hydrophilic surfaces [18,21]. The most
surprising feature is, compared with its stationary counter-
part, a 40% reduction of the contact time is easily attainable
by just exerting a horizontal motion of the surface of a few
m/s [Fig. 3(c)], which is expected to be a strategy to realize
rapid water repellency. We expect that our findings would
be applicable for other types of situations when relative
horizontal motion happens between the drop and the
surface. It would be interesting to extend our results to
the case of Leidenfrost drops or viscous liquids. These
insights could help develop novel strategies for controlling
drop impact dynamics [35], which will shed new light on
practical applications.
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