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In this Letter, we propose a mechanism for driving bioinspired fish swimming locomotion based on
proprioceptive sensing. Proprioception provides information about and representation of a body’s position,
motion, and acceleration in addition to the usual five senses. We hypothesize that a feedback loop based on
this “sixth” sense results in an instability, driving the locomotion. In order to test our assumptions, we use a
biomimetic robot and compare the experimental results to a simple yet generic model with excellent
agreement.
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Multicellular organisms exhibit tremendous diversity in
physiology and shape. This variety is usually rationalized
by the adaption to their environment within the Darwinian
evolution but also by the functions needed by the animals to
live [1]. Locomotion is among the mandatory functions,
motivating physicists to study it, as motions result from a
mechanical interaction of the organism with its environ-
ment. There is a huge variation of gaits in animals for
achieving locomotion [2]. However, we expect general
mechanisms to be at play because all the movements result
from mechanical principles.
Almost all known vertebrates are equipped with central

pattern generators (CPG) [3,4]. CPG are neural networks
that are able to provide a rhythmic output without any
external driving and that control locomotion. Nevertheless,
CPG are tuned with sensory feedback because the motion
must be obviously adapted to the environment of the
moving organism [5]. Sensory information encompasses
the traditional five senses as well as proprioception, which
is the sense of self-movement or body position. This last
class of sensing is usually responsible for the adaptation of
the rhythmic driving of the muscles [6,7] and suggests that
locomotion is driven through proprioceptive feedback as
sketched in Fig. 1.
Predicting the swimming gaits has been the subject of a

variety of studies for more than half a century [8–14]. In all
these studies, the kinematics of the swimmer was imposed
and predictions for the selected tail-beat amplitude and
frequency remained very limited. It is only recently that the
proprioceptive loop depicted in Fig. 1 was hypothesized to
drive the dynamics of the fish deformation [15,16], which
led to the development of the first numerical models
[17,18]. In addition, fishlike robotic systems have proven
to be very efficient underwater vehicles from early attempts
[19,20] to very advanced prototypes [21–23]. Their ability
to probe the environment [24–26] or their own deformation
[27] opens the route toward fully autonomous artificial

swimmers in the near future, as also observed with
quadrupedal robots for terrestrial locomotion [28].
In this Letter, we propose the first demonstration of

swimming following the simple scheme shown in Fig. 1
using a robotic fish that undulates in a thunniform way.
Based on information collected by a force sensor, this
proprioceptive robot swims without any input from an
operator (see movie in the Supplemental Material [29]). We
show that the activation of the robot is ensured by an
oscillatory instability whose threshold matches the envi-
ronment: the robot does not move in air as it does in water.
This general mechanism opens a new route toward the
development of autonomous underwater vehicles.
The robotic fish was described in a former study [22]. Its

soft tail and fin are 3D printed using a flexible polymer
(“Ninjaflex” filament from NinjaTek). Two cables attached
to the end of the tail are actuated by the wheel of a
waterproof servomotor (Hitec HS-5086WP) and permit the
bending of the tail, as seen in Fig. 2, whose deformation is
quantified by the angle α defined from the position of a
tracer located in the middle of the fin. The servomotor is
attached to a force sensor (RFS 150 XY from Honigmann),
which measures the two components Fx and Fy of the force

FIG. 1. Proprioception scheme: the extension of the muscles
providing the deformation is moderated by the integration of the
information from the proprioceptive sensors.
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exerted by the fluid on the swimmer, respectively aligned
and normal to the swimming direction. We use Fy as
the proprioceptive information to trigger locomotion. The
servomotor wheel angle is denoted ϕ and follows the
instruction angle ϕc:

ϕc ¼ −γFy ðIntegrating stage in Fig: 1Þ; ð1Þ

where γ is the control parameter of the proprioceptive
driving. In water, it appears that above the critical threshold
γc;exp ∼ 0.72 radN−1, the robotic tail undergoes spontane-
ous oscillations with a very well defined angular peak-to-
peak amplitude α0 and frequency ω. In Fig. 3, we present
the typical temporal evolution of the angles (ϕ and α) and
forces (T ¼ −Fx and Fy) as the controlling parameter γ is
varied. For γ < γc;exp, the system is stable, and no loco-
motion is expected. Nevertheless, as γ > γc;exp, an insta-
bility occurs and leads to a periodic undulation of the tail.
This oscillation induces a nonzero mean thrust
T̄ ¼ −F̄x > 0, which indicates the capacity of the proprio-
ceptive loop to induce locomotion. The oscillation ampli-
tude increases with γ, and the frequency is of order
ω ∼ 10 s−1, as seen in Fig. 4.
We propose a simple, yet generic, model to shed light on

the instability and discuss how it relies on the sensing
information of the feedback loop depicted in Fig 1. We first
assume that the tail undulates with a relatively small
amplitude, and we consider α ≪ 1. In this limit, Fy depends
on α and on its temporal derivatives:

Fy ¼ −Kα̈α̈ − K _α _α − Kαα ðSensing stageÞ; ð2Þ

where Kα̈, K _α, and Kα are parameters characterizing the
medium, the material, or the substrate with which the
swimmer interacts and could by construction account for
inertial, viscous, and elastic effects. During the motion of a
fish at velocity U, a simple scaling analysis recovers the
terms found by Theodorsen in his theory of oscillating
airfoils, assuming that inertia is dominant [36]:

Kα̈ ∼ ρL4; K _α ∼ ρUL3; Kα ∼ ρU2L2; ð3Þ

with ρ the density of the fluid (here 1000 kgm−3 for water)
and L ¼ 10 cm, the typical length of the fish. The first term
Kα̈ accounts for the added mass due to the bolus of water
accelerated during the tail oscillation, while the last two
terms account for the lift of a moving and inclined airfoil in
a flow. To guess which term is dominant, we compute the
ratios Kα̈α̈=ðK _α _αÞ ∼ ω⋆ and Kα̈α̈=ðKααÞ ∼ ω⋆2, where we
have introduced the dimensionless number ω⋆ ¼ ωL=U. It
appears that, for biological swimmers, this dimensionless

(a)

(b)
SensingIntegrating

Deforming

FIG. 2. (a) Side view of the fishlike robotic system: the white
material is 3D printed using soft polymers. The tail is driven by
two cables attached to a waterproof servomotor (blue piece). The
swimmer is attached to a force sensor (vertical rod connected to
the head). The thin white bar represents 3.5 cm. (b) Top view of
the servomotor and the elastic tail.

(a)

(b)

(c)

FIG. 3. (a) A typical temporal variation on the feedback
parameter γ. (b) The dynamics of the angles α (blue) and ϕ
(orange) as the controlling parameter γ is varied. The angular
frequency ω is deduced from the period 2π=ω. (c) Temporal
evolution of the lateral force Fy (green) and of the thrust T ¼
−Fx (gray) with Fx the longitudinal force. We also show the
mean thrust T̄ in steady state for γ ¼ 1.65 radN−1 (dashed
horizontal line). α0, Φ0, and F0 denote the peak-to-peak ampli-
tudes of αðtÞ, ϕðtÞ, and FyðtÞ, respectively. (See movie in the
Supplemental Material [29]).
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parameter is large [37], ω⋆ ∼ 10, and this is also verified in
our experiments. Hence, only the first term in the expansion
[Eq. (2)] should be kept in Theodorsen’s framework.
However, experiments detailed in the Supplemental
Material [29], performed without external flow, U ¼ 0,
and with an imposed harmonic forcing around the
angular frequencies of interest, give precise measurements
of Kα̈ ¼ ð11.3� 0.1Þ mN rad−1 s2 and K _α ¼ ð147� 1Þ
mN rad−1 s. As a consequence, Kα̈α̈=ðK _α _αÞ ≃ ωKα̈=K _α ∼
1 around ω ∼ 10 s−1 and K _α _α cannot be discarded in the
force expression even if U ¼ 0. We interpret this term as a
viscous force due to the oscillation of the tail inside a fluid
of viscosity η ¼ 1 mPa s for water. As an example, the case
of a cylinder of radius and length L [30] leads to a rough
estimate of K _α ¼ 2πL3

ffiffiffiffiffiffiffiffiffiffiffi
2ρηω

p
∼ 30 mN rad−1 s, which is

in agreement with the precise measurement mentioned.
Note that nonlinear terms could be expected as a transverse
pressure drag force writing −cyρL4j _αj _α, with cy a

dimensionless coefficient. Experimentally, we expect
cy ≪ 1 since we do not observe any significant frequency
doubling in the temporal signal of the transverse force Fy

[Fig. 3(c)], and the amplitude of the force is proportional to
the amplitude of the harmonic forcing (Fig. S4 in the
Supplemental Material [29]). As discussed in [30], con-
vective terms in the Navier-Stokes equation can be domi-
nated by unsteady terms in oscillatory flow. This could
explain the prevalence of the linear term in _α. Nevertheless,
accounting for this nonlinear term improves the matching
between the model and the experimental data at high α0
values, as described in the Supplemental Material [29].
For consistency with what follows, we rewrite

Fy ¼ −Kα̈ðα̈þ ξω0 _αÞ; ð4Þ

with ξ a dimensionless factor and ω0 a quantity that has the
dimension of a frequency.
We now show that the deforming stage in Fig. 1,

quantified by the tail angle αðtÞ, can be predicted by the
dynamics of a weakly nonlinear oscillator driven by the
servomotor. By exploiting the momentum balance applied
to the tail along the y axis, we write

mtLα̈ ¼ Fy þ Fd; ð5Þ

with mt the mass of the tail, Fy the fluid-structure
interaction force characterized in Eq. (4), and Fd the
driving force in the y direction. The latter has to fulfill
two conditions: first, it drives the angle αwith respect to the
control angle α⋆ðtÞ ¼ K1ϕðtÞ, where K1 ¼ 0.55 is a
parameter measured in quasistatic experiments [29].
Second, at the leading order deformation, Fd is modeled
by a polynomial function of δα ¼ α − α⋆ without a
quadratic monomial due to the symmetry of the problem.
This nonlinear function captures the shift of the resonance
frequency with the amplitude as observed with the robotic
fish [22] or flexible panels in other setups [31,38–40].
Consequently, we write FdðtÞ ∝ −δαðtÞ½1 − K2δαðtÞ2�,
with K2 a parameter that weights the nonlinear term with
respect to the linear one. Given that Kα̈ ∼ ρL4 and that fish
in general, and the robotic fish in particular, are slender
objects [41], we expect mt ≪ ρL3 and the dynamical
Eq. (5) becomes

α̈þ ξω0 _αþ ω2
0ðα − K1ϕÞ½1 − K2ðα − K1ϕÞ2� ¼ 0; ð6Þ

with ω0 now interpreted as the linear regime oscillation
frequency of the tail around its equilibrium value K1ϕ. In
addition, ξ is interpreted as the damping factor of the
oscillator.
To close the system, we now model the response of the

servomotor to account for the error between the instruction
angle ϕc and the output angle ϕ associated with this
element in the proprioceptive loop. In the Supplemental

FIG. 4. Oscillatory characteristics of the proprioceptive loop.
(a) Angular amplitude of the tail oscillation α0 as a function of γ.
(b) Angular frequency ω as a function of γ. The experimental
measurements and their error bars are drawn in blue. In (a), the
thin blue curve passing through the data is an interpolation with
the function α0 ¼ Θexp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ − γc;exp

p with γc;exp ¼ 0.72 radN−1 and

Θexp ¼ 0.72 rad1=2 N1=2. The numerical predictions are repre-
sented by thick black lines.
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Material [29], we show that the dynamics is mainly limited
by the finite angular velocity Ω of the servomotor wheel
and is well described by

_ϕ ¼ Ω tanh

�
ϕc − ϕ

Δϕ

�
; ð7Þ

where the parameter Δϕ represents the typical angle
difference between the instruction and the wheel angle at
which the servomotor achieves maximum velocity.
In the Supplemental Material [29], we describe the

experimental methods to measure the values of the various
parameters involved in the feedback loop; they are sum-
marized here in Table I. The set composed of the fluid force
relation [Eq. (4)] coupled to Eqs. (1), (6), and (7)
constitutes a generic model for proprioceptive locomotion.
This system has a steady solution α ¼ ϕ ¼ 0, which
corresponds to a nonmoving swimmer. Our conjecture is
that an oscillatory instability is responsible for the pro-
prioceptive locomotion. Following this idea, we perform a
standard linear stability analysis around the stationary
state. We find an oscillatory instability related to a Hopf
bifurcation [42] at γ ¼ γc. From a dimensional analysis, we
expect γc ∝ ðKα̈ω

2
0Þ−1 with a proportionality constant that

depends on the dimensionless parameters K1, ξ and
½Ω=ðω0ΔϕÞ�. The full calculation gives

γc ¼
2ξþ ω0ΔΦ

Ω ð1þ ξ2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ξ Ω

ω0ΔΦ
− 2ξ2þ ξ4

q
Þ

2ξK1Kα̈ω
2
0

; ð8Þ

which creates an oscillation of frequency ωc at threshold

ωc ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ2Þ

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

Ω
Δϕω0

ξ

ð1 − ξ2Þ2
svuut : ð9Þ

From the values of the parameters (Table I), we found
the predicted threshold value for γ to be γc ∼ 0.75 radN−1

and the oscillation frequency to be ωc ∼ 15.6 rad s−1.
The agreement is very satisfactory given there is no
free parameter once the physical model parameters are
measured.
Using a fourth-order Runge-Kutta algorithm, we have

numerically integrated the complete nonlinear system, and
we compare the model prediction to the experimental
measurements in Fig. 4. It appears that both the oscillation
angular amplitude and frequency in experiments are well

captured by the simple model, taking into account again
that there is no free parameter. We have validated our
approach with another design: the same procedure is
performed in the Supplemental Material [29] with a longer
and more rigid fish tail; in particular, a larger value of γc is
observed. We note here the square root behavior for the
amplitude, which is characteristic of Hopf bifurcations. In
the Supplemental Material [29], we develop an asymptotic
expansion using a small distance to threshold γ − γc, and
we show

α0 ¼ Θ
ffiffiffiffiffiffiffiffiffiffiffiffi
γ − γc

p
; ð10Þ

where Θ ¼ 0.97 rad1=2 N1=2 is predicted from a long
expression of the physical parameters given in the
Supplemental Material [29]. In experiments, Θ is evaluated
to Θexp ¼ 0.72� 0.02 rad1=2 N1=2, and the agreement is
again very satisfactory.
To conclude on the capacity of the proprioceptive loop to

induce locomotion, we have submitted the robotic fish to an
imposed fixed velocity flow into a water tunnel. As the
device is attached to the force sensor, the cruising velocity
of the swimmer can be measured by zeroing the value of the
longitudinal force Fx with the tuning of the inflow velocity
(details in the Supplemental Material [29]). In Fig. 5, we
show the swimming velocity dependence as a function of
the feedback parameter γ. To a first-order approximation,
the thrust results from the projection of the normal force to
the fin toward the x axis [32]. Assuming a harmonic
motion, α and _α are π=2 phase shifted and the term in _α
does not contribute to the thrust. Only added mass
effects are relevant and the average thrust equals
αðtÞFyðtÞ ≃ Kα̈ω

2α20=8 ≃ Kα̈ω
2Θ2ðγ − γcÞ=8. By balanc-

ing the thrust with the typical drag, which is dominated
by the pressure drag CdρU2L2 (the drag coefficient
measured in the Supplemental Material [29] equals

TABLE I. Measured parameters.

ω0 ξ Ω Δϕ K1 K2 Kα̈

13.0 1.0 7.0 0.26 0.55 1.6 11.3
s−1 rad s−1 rad rad−2 mN rad−1 s2

FIG. 5. Swimming velocity U as a function of the proprio-
ceptive feedback parameter γ. The experimental points are shown
as disks. The curve represents the fit U ¼ 0.14

ffiffiffiffiffiffiffiffiffiffiffiffi
γ − γc

p
in

Systeme International units.
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Cd ≃ 0.25, a rather high value that suggests vortex-induced
drag is negligible [43]), we determine that the velocity
scales as

U ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kα̈

8CdρL4

s
ωLΘ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ − γc

p
∼ 0.17

ffiffiffiffiffiffiffiffiffiffiffiffi
γ − γc

p ð11Þ

with Systeme International units, and the order of magni-
tude of the proportionality constant is in good agreement
with that obtained in experiments. This relation is a
consequence of the simple force balance and consequently
retrieves the constancy of the Strouhal number
ωLα0=ð2πUÞ, around 0.3 for Reynolds numbers larger
than 3000 [19,43,44]. The fact that both α0 and ω are
functions of γ does not modify this balance, so that tuning γ
gives a direct control over the swimming velocity.
In this Letter, we have proposed a generic model for

describing swimming locomotion driven by a propriocep-
tive loop. Beside the general framework we have intro-
duced, we have developed a simple experiment that enabled
us to validate the idea that underwater swimmers might
select their amplitude and beating frequency using
mechanical sensors. Our simple model permits the reali-
zation of a tractable experiment; beside its simplicity, it is
shown to have excellent predictive capabilities.
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