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The modulation and engineering of the free-electron wave function bring new ingredients to the
electron-matter interaction. We consider the dynamics of a free-electron passing by a two-level system fully
quantum mechanically and study the enhancement of interaction from the modulation of the free-electron
wave function. In the presence of resonant modulation of the free-electron wave function, we show that the
electron energy loss and gain spectrum is greatly enhanced for a coherent initial state of the two-level
system. Thus, a modulated electron can function as a probe of the atomic coherence. We further find that
distantly separated two-level atoms can be entangled through interacting with the same free electron.
Effects of modulation-induced enhancement can also be observed using a dilute beam of modulated
electrons.
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Introduction.—The interactions of free electrons with
matters have provided a number of technologies for the
study of material and photonic systems [1–4]. Among these
technologies, electron energy loss spectroscopy (EELS)
probes the excitation spectrum of the matter [1–3,5–7], and
photo-induced near-field electron microscopy (PINEM)
detects the near-field of nanostructures under optical
pumping [8–15]. Moreover, in recent years, the quantum
nature of the free electron has attracted considerable
research interest [3,4,8–23]. In particular, over the last
decade, engineering the quantum states of the free electron
becomes possible. For example, experiments demonstrated
the modulation of a single electron wave function by
ultrafast laser technique [8–18].
With the capability of wave function engineering, it is

crucial to investigate how such quantum engineering can be
used to enhance and tailor electron-material interaction and
to create new functionalities. Studies have shown increased
scattering cross section, and coherent control of atomic
transitions using a resonant modulated electron beam
[24–26]. Entanglement between electron and photons
has been studied in the interaction of an electron with
an optical cavity [27]. Moreover, recently Gover and Yariv
has studied the interaction of a modulated electron beam
and an atom, in a semiclassical formalism, and showed the
possibilities of Rabi oscillation in such free-electron–
bound-electron interaction [25].
In this Letter, we apply a fully quantum scattering matrix

description to the free-electron–bound-electron interaction
[2,3,15,26,28]. We investigate the electron energy loss and
gain spectrum and the perturbation on the density matrix of
the two-level system, highlighting the enhancement of the

interaction resulted from the modulation of the free
electron. We find the potential of probing the coherence
of the two-level system using the modulated free electron.
The quantum treatment also predicts the possibility of using
multiple scattering processes to generate entanglement
between two bound-state electrons. Finally, we consider
the interaction between the two-level system and a dilute
beam of modulated electrons. We discuss a possible
partially mixed steady state of the atom due to the
modulation, while also providing a rigorous foundation
for the semiclassical results of the Rabi oscillation of the
two-level system [25].
Model setup.—We consider the scattering problem

between a free electron with a two-level system from first
principles (Fig. 1). In the low-velocity limit, the electrons
are governed by the Schrödinger equation and the inter-
action potential is the Coulomb potential. In analyzing the
Coulomb interaction, we consider only the interaction

FIG. 1. Schematic of the interaction between an electron (blue
wave packet) and a two-level system (orange circle). The inset
shows a schematic of a train of electrons interacting with the two-
level atom.
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between the free electron and the bound electron, and use
the dipole approximation. If we further assume that the
transverse distribution of the free-electron wave function is
unchanged, the model Hamiltonian becomes

H ¼
X
α

Eαc
†
αcα þ

X
k

Efree
k c†kck

þ
X
q

bq½g21ðqÞσþ þ g12ðqÞσ−�; ð1Þ

where α ¼ 1, 2 represents the bound states of the two-level
system, c† and c are the creation and annihilation operators,
σþ ¼ c†2c1, σ

− ¼ c†1c2, and b is the electron ladder operator
bq ¼

P
k c

†
k−qck [11,27]. The coupling between the free

electron and the bound state electron (gij) can be generally
derived from the Coulomb interaction (Supplemental
Material, Sec. I [29]).
We treat the free-electron–bound-electron scattering

problem perturbatively, since the interaction is generically
weak. Under the weak coupling assumption, only the
electron ladder operator with q ¼ ωa=v0 matches the
two-level system transition and contributes to the scatter-
ing. Here, ωa is the transition frequency of the two-level
system and v0 is the velocity of the electron wave packet. In
the following, we consider only such matched electron
ladder operator and omit the subscript q. To second order in
the dimensionless coupling coefficient g, which is propor-
tional to g21ðωa=v0Þ, the scattering matrix is [29]

S ≈
�
1 −

1

2
jgj2

�
I − iðgbσþ þ g�b†σ−Þ; ð2Þ

where I is the identity operator. The magnitude of the
coupling (g) depends on the transition dipole moment, the
free electron velocity, and the transverse distance. A typical
value is jgj ∼ 10−3. An estimation for the tin-vacancy (SnV)
[35,36] is in Supplemental Material, Sec. II [29]. This
concise scattering matrix [Eq. (2)] provides a fully quantum
mechanical description of the interaction between the free
electron and the two-level system. It manifests the entan-
glement between the atomic transition of the bound
electron and the hopping on the energy ladder of the free
electron. It works well for arbitrary initial states and reveals
results due to free-electron modulation that are obscured in
previous studies.
Modulation of the free electron.—We briefly revisit the

free-electron energy modulation and wave function engi-
neering [11]. In PINEM, the free electron interacts with the
near-field and absorbs or emits integer number of photons.
The free-electron wave function with small initial energy
spread then contains multiple energy components. The
multiple energy levels are on a ladder with energy sepa-
ration equal to the absorbed or emitted photon energy ℏω
(Fig. 2). The unitless modulation strength gm is defined as
gm ¼ e

R
dz expð−iωz=v0ÞEmzðzÞ=2ℏω, where z is the

electron propagation direction and Emz is the z component
of the modulation field. In the free-drift region after the
energy modulation, different energy components accumu-
late different additional phases and the real-space electron
probability distribution forms a train of microbunches [11].
Such free electron with engineered wave function is
referred to as the modulated free electron in this study.
Perturbation on the two-level system.—The modulated

free electron can drive the transition of the two-level system
coherently. The change in the density matrix of the two-
level system is obtained by tracing out the free electron
state, Δρa ¼ TreðSρieaS† − ρieaÞ, where the initial density
matrix ρiea ¼ ρie ⊗ ρia. In terms of the two-level system
density matrix elements, we get

Δ

0
BBBB@

ρa11

ρa22

ρa12

ρa21

1
CCCCA ¼ −iM

0
BBBB@

ρa11

ρa22

ρa12

ρa21

1
CCCCA;

M ¼

0
BBBB@

−ijgj2 ijgj2 −gs g�s�

ijgj2 −ijgj2 gs −g�s�

−g�s� g�s� −ijgj2 ig�2s�2
gs −gs ig2s2 −ijgj2

1
CCCCA; ð3Þ

where s ¼ hbi and s2 ¼ hb2i are parameters determined by
the state of the incident electron.
The lower-left off-diagonal 2 × 2 block of M represents

the change in the atomic coherence to the first order of g,
which depends strongly on the incident electron state. For a
quasimonochromatic electron or a modulated electron
without drift for microbunching, s ¼ 0. However, for a
modulated electron with a proper drift length for micro-
bunching [11,37–39], s ≠ 0 and may approach unity with
sophisticated modulation [12,14]. Therefore, the induced
coherence in the two-level atom is controlled by the
modulation on the free electron.
We further study s for a modulated electron and discuss

conditions to maximize jsj in typical PINEM. We consider

FIG. 2. Left: Schematic of the electron ladder for an electron
modulated at frequency ω and the energy levels of the two-level
system, where ωa ¼ lω and l ¼ 3. Right: Maximal jsj and the
corresponding drift length for different harmonic orders.
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a Gaussian electron wave packet with momentum spread
σq ≪ ωa=v0. The wave packet is modulated by a laser at
frequency ω, with modulation strength gm, and propagates
for a drift length Lp before it interacts with the two-level
system (Supplemental Material, Sec. III [29]). We find that
the magnitude of s is maximized on resonance ωa ¼ lω,
where the harmonic order l is an integer. Under this
resonance condition,

jsj≈
����Jl

�
4jgmj sin

�
lLp

4jgmjLp;c

������; ð4Þ

where Lp;c is the drift length for perfect bunching from
classical analysis (Supplemental Material, Sec. III [29]).
The maximal jsj is the peak of Bessel function Jl and the
argument gives the optimal drift length. To reach
the maximal jsj for the lth harmonic, the modulation
strength jgmj > l=4. When the modulation is strong,
jsj ≈ JlðlLp=Lp;cÞ, the optimal drift length becomes inde-
pendent of gm. The maximal jsj and the corresponding
optimal drift length are shown in Fig. 2. We find that jsj
decreases slowly with increasing harmonic order. This
trend indicates the potential to drive two-level system at
high harmonics with the modulated electron [25]. The
optimal drift length is larger than the drift length to create
the shortest electron bunch (Fig. 2), especially for small
harmonic orders.
Electron energy loss and gain spectrum.—The atomic

coherence can be probed by the modulated free electron in
EELS, with an enhanced signal. The change in the density
matrix of the free electron is

Δρe ¼ TraðSρieaS† − ρieaÞ
¼ −jgj2ρie þ jgj2ρia11bρieb† þ jgj2ρia22b†ρieb
− i½gρia12ðbρie − ρiebÞ þ g�ρia21ðb†ρie − ρieb†Þ�: ð5Þ

Thus, the free-electron spectrum change is ΔρeðkÞ ¼
hkjΔρejki (Supplemental Material, Sec. III [29]). The
average energy change is

hΔEei ¼ ℏωajgj2ðρia22 − ρia11Þ
þ iℏωaðgρia12hbi − g�ρia21hb†iÞ: ð6Þ

We find that the energy exchange between the free electron
and the two-level system depends on the initial states of the
two-level system and the free electron. When hbi ≠ 0, the
electron energy loss, as well as the energy spectrum
variance, is proportional to the off-diagonal elements of
the two-level system density matrix to the first order in g.
On the contrary, for an electron in a totally mixed state or
being quasimonochromatic, ΔρeðkÞ and hΔEei become
proportional to jgj2. Thus, the control of the free-electron
state is crucial to observe the first order effects. In short,
Eqs. (5) and (6) imply an opportunity to probe the

coherence of the two-level system by measuring the energy
loss and gain spectrum of the free electron.
The enhanced EELS signal that is to the first order of g

can be optimized by controlling the free-electron wave
function. We discuss the optimal conditions for a typical
PINEM modulated electron in Supplemental Material,
Sec. IV [29]. As an demonstration, we study the free-
electron spectrum change of a modulated free electron
interacting with a two-level system (SnV) in a super-
position state jΨai ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

(Fig. 3). We assume
that the 60 keVelectron is modulated at resonant frequency
ωa (620 nm) with optimal strength gm ¼ 0.68 and drift
length Lp ¼ 10 mm [29]. Before interacting with the two-
level system, the electron spectrum is shown in Fig. 3(d),
which is a typical PINEM spectrum [11]. After the
interaction, the spectrum change that is proportional to
jgj (jgj2) is plotted in Fig. 3(e) [Fig. 3(f)], where we assume
a typical value g ¼ 1 × 10−3. In this case, the jgj2 con-
tribution is much smaller than the jgj contribution and can
be neglected. The spectrum change is as Fig. 3(e).
However, if either the free electron or the two-level system
loses the coherence, the jgj contribution disappears and the
spectrum change is as Fig. 3(f). In comparison, we study a
Gaussian wave packet with small initial energy spread
(σp ≪ ωa=v0) [Fig. 3(a)] interacting with the same two-
level system in state jΨai. After the interaction, the
spectrum change is proportional to jgj2, with zero con-
tribution proportional to jgj [Figs. 3(b)–3(c)]. In contrast to
typical PINEM spectra, the spectrum change probing the
atomic coherence can be antisymmetric [Fig. 3(e)]. This
antisymmetric part can be extracted to determine the

FIG. 3. Spectrum change of the free electron interacting with a
two-level system in state jΨai ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

, where the free
electron is either a 60 keV Gaussian wave packet with σp ≪
ωa=v0 (a)–(c) or a resonant modulated wave packet with optimal
modulation strength gm ¼ 0.68, modulation frequency ωa
(620 nm), and drift length 10 mm (d)–(f). (a),(d) The electron
energy spectrum before the interaction. (b),(e), and (c),(f) are the
spectrum changes after the interaction in the first and second order
of jgj, respectively, where a typical g ¼ 1 × 10−3 is assumed.
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atomic coherence experimentally (Supplemental Material,
Sec. V [29]).
When the two-level system is initially at the ground state

and the incident free electron has a well-defined momen-
tum ℏk0, our result is consistent with conventional EELS
[2]: ΔρeðkÞ ¼ −jgj2δk;k0 þ jgj2δk;k0−ωa=v0 , which is propor-
tional to jgj2. Thus, in typical situations jgj ≪ 1, the
modulated electron provides an opportunity to probe the
coherence of the two-level system with an EELS signal
much stronger than the conventional EELS signal.
Entanglement.—Two separated two-level atoms can be

entangled through the interaction with the same free
electron. As illustrated in Fig. 4, a single electron interacts
in sequence with two-level atoms 1 and 2, which have the
same transition frequency ωa. After the interactions, the
electron energy is measured. We assume that the two atoms
are separated enough to avoid electron wave function
overlap between the two atoms. Suppose that both atoms
are at the ground state and the free electron has energy
spread σq ≪ ℏωa before the interaction, and the coupling
coefficient between the electron and atom 1 (2) is g1 (g2).
The final state after scattering is

jΨf
e12i ¼ ½S2ðg2Þ ⊗ I1�½S1ðg1Þ ⊗ I2�jΨi

eijΨi
1ijΨi

2i; ð7Þ

where S1 (S2) acts on the product space of the electron and
atom 1 (2). We assume that when the electron interacts with
one of them, the other atom has no influence. An explicit
form of the final state is shown in Supplemental Material,
Sec. VI [29].
After the interactions, if certain energy of the electron is

measured, the two atoms are in an entangled state. For
instance, when the electron has initial momentum ℏk and
final momentum ℏk − ℏωa=v0, the two atoms are in the
entangled state

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg1j2 þ jg2j2

p ½g2jΨi
1iðσþjΨi

2iÞ þ g1ðσþjΨi
1iÞjΨi

2i�: ð8Þ

The probability of obtaining such entangled state is
∼ðjg1j2 þ jg2j2Þ. It is possible to increase the coupling
coefficients and hence the probability of entangled state
generation by choosing two-level systems with large
transition dipole moment, decreasing the distance between
the electron trajectory and atoms, and decreasing the
electron speed [40]. Furthermore, entanglement between
multiple atoms is possible if the single electron interacts
with each of them before the energy measurement.

Multiple electrons.—The enhancement of perturbation
on a two-level system resulting from the free-electron
resonant modulation is also manifested in the interaction
between the two-level system and a dilute electron beam
(inset of Fig. 1), since the atomic coherent excitation can
build up in the sequential scattering of the electrons by the
atom. The adjacent electrons are separate with an average
separation larger than the longitudinal size of the electron
wave function, such that, for each electron interacting with
the two-level system, the influence of other electrons is
negligible. Since the perturbation of a single free-electron
interaction is given by Eq. (3), the effective dynamics of the
two-level system is

Δu
Δt

¼ −i
M
T
u − Γu; Γ ¼

0
BBBBB@

0 − 1
τ 0 0

0 1
τ 0 0

0 0 1
2τ 0

0 0 0 1
2τ

1
CCCCCA
; ð9Þ

where u ¼ ½ρa11; ρa22; ρa12; ρa21�T , T is the time separation
between adjacent electrons, and τ is the decay time of
the two-level system [41]. The average dynamics is
similar to the optical Bloch equations [26]. The effective
Hamiltonian describing the two-level system driven by the
electron beam is Heff ¼ M=T − iΓ. The effective
Hamiltonian has a zero eigenvalue corresponding to the
steady state:

ρa ¼
1

1þ 2ð2jgsjτT Þ2

2
64 1þ

�
2jgsjτ
T

	
2

i 2g
�s�τ
T

−i 2gsτT

�
2jgsjτ
T

	
2

3
75; ð10Þ

where we assume jsj ≫ jgj due to resonant modulation.
Without modulation, i.e., s ¼ s2 ¼ 0, the steady state
becomes ρa ¼ ½ð1Þ=ð1þ 2jgj2τ=TÞ�½1þjgj2τ=T

0
0

jgj2τ=T�, where
the off-diagonal elements are zero and the excited state
probability is typically much smaller in comparison with
the modulated case. Thus, the analysis of the two-level
system steady state shows the enhanced interaction due to
the modulation of the free electron.
Before reaching the steady state, the two-level system

may experience Rabi oscillation if T < 8jgsjτ, which can
be observed with state-of-the-art experimental technology
(Supplemental Material, Sec. VII [29]). In the limit of
small two-level-system decay rate, the Rabi oscillation
frequency is ΩR ¼ 2jgsj=T, which is consistent with the
semiclassical results [25]. The physical intuition
about this consistency is that the classical interpretation
of s ¼ hbi is the amplitude of the current distribution with
spatial frequency k ¼ ωa=v0 [15]. Therefore, our theory
provides a rigorous foundation for the semiclassical
results.

FIG. 4. Schematic of an electron interacting with two atoms.
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Conclusion.—We present a quantum description for the
interaction between a free electron and a two-level system
that reveals the quantum entanglement and applies to the
modulated electron straightforwardly. We highlight the
enhancement of interaction due to the modulation of
the free-electron wave function, which can be utilized to
probe the atomic coherence. Such enhancement persists
when the two-level system interacts with a dilute modu-
lated electron beam. We also discuss an approach to create
entanglement between distant two-level systems through
the interaction with the same free electron. Our study of the
free-electron–bound-electron interaction emphasizes the
significance of free-electron wave function engineering
and provides new perspectives for ultrafast physics studies
using the free-electron probe.
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Note added.—Recently, several papers [42–45] appeared
on the preprint archive, providing quantum treatments of
interactions of modulated electrons with the atom.
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