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We study Feynman integrals and scattering amplitudes inN ¼ 4 super-Yang-Mills theory by exploiting
the duality with null polygonal Wilson loops. As the main application, we compute for the first time the
symbols of the general double pentagon integrals, which give the finite part of two-loop maximally helicity
violating (MHV) amplitudes and finite components of next-to-MHV (NMHV) amplitudes to all
multiplicities. The rational parts of the symbol consist of 164 letters, while the algebraic part contains
96 algebraic letters and cancel in MHVamplitudes and NMHV components which are free of square roots.
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Introduction.—Scattering amplitudes are central objects
in fundamental physics: they are crucial for connecting
theory to experiments in particle accelerators such as the
Large Hadron Collider, and they play a central role in
discovering new structures of quantum field theory (QFT).
As arguably the simplest QFT, tremendous progress has
been made for planar N ¼ 4 supersymmetric Yang-Mills
theory (SYM); not only have hidden mathematical struc-
tures for all-loop integrands been unraveled [1–3], but the
integrated amplitudes have also been computed to impres-
sively high loops, for n ¼ 6, 7 [4] and for higher multi-
plicities [5–8]. Moreover, these studies have made N ¼ 4
SYM an extremely fruitful playground for new methods of
evaluating Feynman integrals, which is a subject of
enormous interest (cf. [9–11] and references therein).
In planar N ¼ 4 SYM, a remarkable duality between

maximally helicity violating (MHV) scattering amplitudes
and null polygonal Wilson loops (WL) was discovered at
both strong [12] and weak coupling [13,14]; later it was
established that superamplitudes (after stripping off MHV
tree prefactor) are dual to supersymmetric WL [15,16], and
quite a lot ofwhatwe have learned about amplitudes are from
this dual picture. Based on integrability [17] and operator
product expansions ofWL [18], one can compute amplitudes

at any value of the coupling around collinear limits [19]; the
powerful Q̄ anomaly equation [20] for computing multiloop
amplitudes [7,8] was derived from the dual WL as well. In
this Letter, we exploit the dual picture in yet another context:
the computation of certain Feynman integrals [21].
Recall that in computing (super-)WL, one inserts fields

in the supermultiplet at edges and vertices of the null
polygon, as well as chiral Lagrangians at dual points which
correspond to loop variables to be integrated over [15]. We
will see that, certain loop integrals for scattering amplitudes
are more easily performed as Feynman diagrams of WL
where (some) loop insertions can be trivially integrated out
and yield relatively simple integrations over edge insertions
(and remaining loops). In this way, we obtain the “d log”
representation for loop integrals and amplitudes made of
them [22], which not only makes the evaluation much
simpler, but also various desired properties manifest. We
initiate the systematic study of d log representations for a
wide range of simple loop integrals in [23], but here we
focus on the computation of a class of particularly
important integrals, the double pentagons [24]. We denote
such an integral as Idpði; j; k; lÞ with massless corners
i, j, k, l (which is finite for j > iþ 1 and l > kþ 1):
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Remarkably, the two-loop MHV amplitudes are given by
the sum of Idpði; j; k; lÞ with i < j < k < l < i cyclically
(including divergent boundary terms) [24], and these
integrals also give a large class of components of two-
loop NMHVamplitudes. This fact can be derived from the
local-integral representation of amplitudes [24]; let us
review pictorially how Idp’s naturally give NMHV com-
ponents of supersymmetric WL. Recall that the polygonal
WL are most nicely formulated in terms of momentum
twistors [25], which correspond to null rays in the
dual spacetime and manifest the SL(2,2) dual conformal
symmetries [26]: the vertices xi are given by
ðxiþ1 − xiÞα _α ¼ λαi λ̃

_α
i , and similarly for the Grassmann part

ðθiþ1 − θiÞαI ¼ λαi η
I
i . Then, we introduce the (super)

momentum twistors Zi ¼ ðZa
i jχAi Þ ≔ ðλαi ; xα _αi λiαjθαAi λiαÞ,

and hence the Plücker coordinates hijkli ¼
ϵabcdZa

i Z
b
jZ

c
kZ

d
l with the standard Levi-Civita symbol

ϵabcd. Consider the component χAi χ
B
j χ

C
k χ

D
l of NMHV

super-WL, with nonadjacent i < j < k < l. It is easy to
see that such a component is given by the difference of two
Feynman diagrams of WL (Fig. 1.).
To see that each diagram exactly gives a double

pentagon, we refer to the argument in [15]: after integrating
out fermion insertions along the edges, we obtain
all propagators and the numerators (“wavy lines”) of Idp,
with loop integrations over the insertion points l1, l2.
Thus from the WL picture alone, we see that the
simplest NMHV component amplitudes at two loops
are given by a difference of two WL diagrams,
Idpði; j; k; lÞ − Idpðj; k; l; iÞ.
The double pentagon Idp has only been evaluated for

n ≤ 7 legs [10,27] [28]. Starting n ¼ 8, this integral
generically depends on functions of kinematics that contain
irreducible square roots of Gram determinants, which we
call “algebraic letters” [10]. The most general Idpði; j; k; lÞ
depends on 12 legs, i − 1; i; iþ 1;…; l − 1; l; lþ 1, which
has an identical kinematic space as that of the chiral
octagon [24]; the generic Idp is expected to contain 16
square roots corresponding to 16 four-mass box configu-
rations of the latter, and similarly for all finite degener-
ations. Its analytic computation is currently beyond the
reach of conventional method, e.g., Feynman parametriza-
tion. The up-to-date result is the numeric computation of
Idpð1; 3; 5; 7Þ with n ¼ 8 at a particular kinematic point
[29], which suggests that Idpði; j; k; lÞ − Idpðj; k; l; iÞ is free

of square roots. This surprising observation has been
confirmed by an independent Q̄ calculation for two-loop
NMHV amplitudes [7,8], which shows that the above
components are free of square roots for any n. However,
the Q̄ equation is for the full amplitude, thus has no access
to the individual Idp involving algebraic letters. In this
Letter, we solve this long-standing problem by evaluating
the symbol [30] of the most generic Idpði; j; k; lÞ with
n ≥ 12 from WL. This amounts to the first all-multiplicity
computation of all finite integrals for two-loop MHV
amplitudes and these special components of NMHV
amplitudes.
The key lies in the fact that we can swap the order of

integrations in WL diagrams: For Idp, it is possible to
perform both loop integrations and be left with fourfold
integrals over edge insertions, but in practice a mixture of
integrations turns out to be more convenient. We apply
the trick only for one of the loop integrations and evaluate
the other one by the usual box expansion [31]. In this way,
we express Idp as a sum of twofold d log integrals of some
polylogarithms of weight 2, which turn out to be similar to
Q̄ computations [7,8,20] and the predecessor [6]. An
important technical point is that when performing the
twofold integrations, one needs to “rationalize” square
roots in four-mass box integrals. Among other things,
we find remarkably compact “algebraic words” of the
symbol containing 16 square roots, where for each of them,
only 4 new algebraic letters appear compared with the
corresponding four-mass box. We see how these algebraic
words nicely cancel in the difference for NMHV
components, as well as in the cyclic sum for MHV
amplitudes. Even more remarkably, the complete
symbol for generic Idpði; j; k; lÞ can be expressed com-
pactly using two independent weight-3 integrable
symbols, which we will present explicitly. The alphabet
contains 164 rational letters, in addition to the alge-
braic ones.
Warmup example: Chiral pentagon.—Before moving to

Idp, let us illustrate this method using the one-loop chiral
pentagon (Fig. 2), which is the ingredient of one-loop
MHV amplitudes. The integral has four propagators
associated with i, j, and the last one specified by a generic
line L:

Ipði; j; LÞ ≔
Z

d4lhlī ∩ j̄ihLiji
⟪li⟫⟪lj⟫hlLi ; ð1Þ

where the loop momentum l can be understood as a point
in dual space, and hence a line in twistor space. Here we
introduce a shorthand ⟪li⟫ ≔ hli − 1iihliiþ 1i. The
numerator depends on the two solutions of the two-
mass-easy Schubert problem: (ij) and the intersection of
planes ī ≔ ϵabcdZb

i−1Z
c
i Z

d
iþ1 and j̄ [32].

FIG. 1. NMHV component of super-WL as difference of two
diagrams, each equal to a double-pentagon integral.
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In [15], Ip was interpreted as a (bosonic) WL diagram
with gluons inserted at edge i, j and a Lagrangian insertion
at l. For our purpose, it is convenient to represent Ip=hLiji
as a WL diagram with two fermions inserted at edge i, j,
both connected to the Yukawa vertex ψψϕðlÞ, and a scalar
propagator from l to the reference line L (Fig 2). To see
this, we write ⟪li⟫−1 as 1D integral

R∞
0 hliXðτÞi−2dτ,

where we have introduced the twistor interpolating between
Zi−1 and Ziþ1 [15]: XðτÞ ≔ Zi−1 þ τZiþ1. Note x ≔ ðiXÞ
corresponds to the insertion point on edge i (with two
endpoints given by τ → 0, ∞) and similarly for y ≔ ðjYÞ;
the numerator is obtained by taking into account that for
fermion propagators ½ijðx − lÞðl − yÞjj� ∝ hlī ∩ j̄i.
Remarkably, one can easily perform the loop integration
for this diagram

Z
d4ld2τhlī ∩ j̄i

hliXi2hljYi2hlLi ¼
Z

∞

0

d2τhLī ∩ j̄i
hLiXihLjYihiXjYi ; ð2Þ

where we have used a version of star-triangle identity
(Fig. 2) for three-point functions in conformal field theory
[33]. By (2), one can represent Ipði; j; LÞ as a twofold line
integration over two d log’s,

Ipði; j; LÞ ¼
Z

d log
hLjYi

hīðjYÞ ∩ ðiLÞi d log
hiXjYi
hLiXi ; ð3Þ

where the integration domain for X, Y are edge i and j. This
expression makes it clear that it is a pure function, that is a
linear combination of polylogarithms with numerical
coefficients, of weight 2. In this form, the integration is
trivial and yields the well-known result; this WL repre-
sentation not only trivializes the evaluation of integrals, but
also manifests properties of the answer, such as dual
conformal invariance (DCI) and uniform transcendental
weights.
The double pentagon as twofold integrals.—Now we

turn to the main object of interests: the double pentagon
integral,

Idpði; j; k; lÞ ≔
Z

d4l1d4l2hl1 ī ∩ j̄ihl2k̄ ∩ l̄ihijkli
⟪l1i⟫⟪l1j⟫hl1l2i⟪l2k⟫⟪l2l⟫

:

ð4Þ

Without explicitly using the WL diagram, we apply the
same manipulation as above for loop l1 to write it as an
integration of a one-loop hexagon over edge i, j:

ð5Þ

where the one-loop hexagon is defined as

Ihex ≔
Z

d4l2hl2ī ∩ j̄ihl2k̄ ∩ l̄i
hl2iXihl2jYi⟪l2k⟫⟪l2l⟫

: ð6Þ

Note that it has two “deformed” legs X, Y rather than
original iþ 1 and j − 1. The computation of Ihex is
standard—using the familiar box expansion or the general
algorithm provided in [34]. Either way, the result turns out
to be a linear combination of ð6

4
Þ ¼ 15 box integrals with

some d log 2-forms as the coefficients.
To describe our result, it is convenient to label

the six propagators of Ihex by the six points
x; y; xk; xkþ1; xl; xlþ1 in the dual spacetime [as in
Eq. (5)] and introduce the “γ”-deformed four-mass box
function: F̃ ≔ γFðu; vÞ − 1=2 log u log v, where we have
introduced γ ≔ r1 − r2=r1 þ r2 and

Fðu;vÞ≔ Li2ð1− zÞ−Li2ð1− z̄Þ þ 1

2
log

�
z
z̄

�
logðvÞ

with u¼ ua;b;c;d ¼ zz̄; v¼ ub;c;d;a ¼ ð1− zÞð1− z̄Þ;

and ua;b;c;d ≔ x2a;bx
2
c;d=ðx2a;cx2b;dÞ, r1 and r2 are leading

singularities [24] evaluated at two solutions of the four-
mass Schubert problem. Then, Idp can be compactly
expressed as

Z
ð½x; xk�Ix;xk − ðk − 1 ↔ kþ 1ÞÞ − ðk̄ ↔ l̄Þ þ ½x; y�Ix;y

ð7Þ

where the second term is obtained by swapping k − 1 with
kþ 1, ðk̄ ↔ l̄Þ denotes terms given by swapping k, xk or
xkþ1 with l, xl or xlþ1 for the first two terms [35], and

FIG. 2. The chiral pentagon written as a WL diagram, and loop
integral performed using “star-triangle” identity.
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½x; y� ¼ d log
hiXkli
hiXjYid log

hīðjYÞ ∩ ðiklÞi
hjYkli ;

½x; xk� ¼ d log
hjYili
hjYklid log

hiXjYi
hlðiXÞðjYÞðkkþ 1Þi ;

Ix;xk ≔ F̃ðx; y; xkþ1; xlÞ− F̃ðx; y; xkþ1; xlþ1Þ
−L2ðlþ 1; x; y; lÞ þL2ðlþ 1; x; kþ 1; lÞ
−L2ðlþ 1; y; kþ 1; lÞ þ logulþ1;x;y;l logux;y;kþ1;lþ1;

Ix;y ≔ L2ðx; k; kþ 1; lÞ−L2ðx; k; kþ 1; lþ 1Þ
−L2ðlþ 1; x; k; lÞ þL2ðlþ 1; x; kþ 1; lÞ
−L2ðlþ 1; k; kþ 1; lÞ þ logulþ1;x;k;l logux;k;kþ1;lþ1

with L2ða; b; c; dÞ ≔ Li2ð1 − ua;b;c;dÞ. We remark that (7)
has a number of desirable properties. It is manifestly DCI
and expected to yield weight-4 polylogarithms, and one can
check that it remains finite even for special cases such as
j ¼ kþ 1 or i ¼ lþ 1. Moreover, for the generic case we
have 4 four-mass boxes involved, which depend on square
roots Δðx; y; k; lÞ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − u − vÞ2 − 4uv

p
(where u, v are

defined as above for these four points) etc., and after
integrating over x, y, each needs to be evaluated at
endpoints x ¼ xi; xiþ1 (similarly for y). Thus the result
must contain the 16 square roots Δði; j; k; lÞ,
Δðiþ 1; j; k; lÞ, Δði; jþ 1; k; lÞ, Δðiþ 1; jþ 1; k; lÞ etc.
as expected.
Rationalization: Uniform transcendentality, algebraic

words and their cancellation.—Had there been no square
root in Ihex, it would have been straightforward to perform
the twofold integrations in (5). In addition to square roots in
F̃’s, what is worse is the presence of γ’s which makes it
even obscure that the answer must be pure. It turns out that
these issues are resolved by “rationalizing” the square
roots, which have been exploited in the Q̄ calculation [7,8].
The idea is very simple: we make a change of variables
such that there is no square root in Ihex, then the integral can
be performed e.g., at the symbol level using the
algorithm given in [20], and square roots only appear
via integration domains. Let us consider any of the 4 four-
mass boxes F̃ðxðτÞ; yðτ0Þ; �; �Þ, where the square roots are
contained in zðτ; τ0Þ and z̄ðτ; τ0Þ. We make change of
variable from τ to zðτÞ (suppressing the dependence
on τ0). As for the z̄, note that there exist a and b,
which depend on kinematics and τ0, but they are indepen-
dent of τ, such that auðτÞ þ bvðτÞ ¼ 1. This allows
us to relate z̄ðτÞ to zðτÞ by a Möbius transformation
z̄ ¼ ΛðzÞ ≔ ½bzþ ð1 − bÞ�=½ðaþ bÞz − b�.
Something remarkable happens at this stage: the

prefactor γ, together with d log forms depending
on τ, becomes a beautiful d log of a rational function
of zðτÞ. The τ integral for a four-mass box function
becomes

Z
zð∞Þ

zð0Þ
d log

z − w
z − ΛðwÞ

�
Li2ð1 − zÞ − Li2½1 − ΛðzÞ�

þ 1

2
log

z
ΛðzÞ logfð1 − zÞ½1 − ΛðzÞ�g

�
; ð8Þ

for some w and ΛðwÞ, both of which are independent of τ.
At this stage, it becomes obvious that Idp is represented as
twofold d log integrals of weight-2 pure functions.
In this form, one can perform the τ integration directly,

and it suffices to give the part of the symbol only involving
square roots. The algebraic part of the above integral (8)
gives a beautiful weight-3 “algebraic word” (of the τ0
integrand):

1

4

�
u ⊗

1 − z̄
1 − z

þ v ⊗
z
z̄

�
⊗

ðz − wÞ½ΛðzÞ − ΛðwÞ�
ðΛðzÞ − wÞ½z − ΛðwÞ�

����
τ¼∞

τ¼0

;

where we evaluate the symbol at τ ¼ ∞, minus that at
τ ¼ 0, which results in square roots Δðxi; y; �; �Þ and
Δðxiþ1; y; �; �Þ. Note that the first two entries are exactly
the symbol of the four-mass box, Fðu; vÞ. One can easily
check that these weight-3 algebraic words cancel in the
difference Idpði; j; k; lÞ − Idpðj; k; l; iÞ.
Next we need to rationalize the square roots in τ0 of the

above algebraic words to perform the τ0 integration. We
emphasize a major difference between this step and the
previous one from weight 2 to 3: the d log factors are
manifestly rational due to the absence of a γ factor, thus
after we change variable from τ0 to zðτ0Þ, the arguments of
d log’s are given by products of the form ðz − wÞ½z −
Λ0ðwÞ� rather than ratios. The immediate consequence is
that the last entries of the resulting symbol are free of any
square roots [36]. In the end, we obtain a remarkably
compact expression for algebraic words of the final answer:
the first two entries are given by (the symbol of) four-mass
boxes, the third entry given by algebraic letters, and the last
entry rational ones. Since there are 16 square roots,
Δða; b; c; dÞ for a ≔ iþ σ1, b ≔ jþ σ2, c ≔ kþ σ3, d ≔
lþ σ4 with σ ¼ 0, 1, the algebraic part of the symbol of
Idpði; j; k; lÞ can be written as an alternating sum of 16
terms:

X
σa∈f0;1g

ð−Þ
P

σS½Fðiþσ1;jþσ2;kþσ3; lþσ4Þ�⊗Wi;j;k;l
σ1;…;σ4

ð9Þ

where each term is characterized by a four-mass box
Fða; b; c; dÞ; it is accompanied by the last two entries
denoted as Wi;j;k;l

σ1;…;σ4 , which contains the same square root
Δða; b; c; dÞ and depends on xa;…; xd and i, j, k, l.
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Wi;j;k;l
a−i;…;d−l ¼ χj;ka;b;c;d ⊗

hxajkihxbili
hxajlihxbiki

þ cyclic

þ 1

2

�
z̄ð1 − zÞ
zð1 − z̄Þ

Y
χ

�

⊗
hxajlihxbikihxcjlihxdiki
hxaklihxbilihxcijihxdjki

ð10Þ

where the first four terms are given by cyclic rotations of i,
j, k, l (thus also of a, b, c, d), and in the last term, both
½z̄ð1 − zÞ�=½zð1 − z̄Þ� and the product

Q
χ are cyclic invari-

ant; the four new algebraic letters are given by

χj;ka;b;c;d ≔

0
@hxaxbihxdjki

hxdxbihxajki − za;b;c;d
hxaxbihxdjki
hxdxbihxajki − z̄a;b;c;d

1
A

and cyclic images χk;lb;c;d;a, χ
l;i
c;d;a;b and χi;jd;a;b;c. Note that the

algebraic letters are special multiplicative combinations of
those found for two-loop NMHV amplitudes in [8].
The way we presentW makes manifest a nice symmetry,

Wi;j;k;l
σ1;σ2;σ3;σ4 ¼ Wj;k;l;i

σ2;σ3;σ4;σ1 , which guarantees that all square
roots cancel in Idpði; j; k; lÞ − Idpðj; k; l; iÞ, as we have seen
at the level of weight-3 integrands. It is even more

interesting to see how square roots also drop out for
two-loop MHV amplitudes (given by a cyclic sum of all
Idp’s). To see this, we collect algebraic words for a given
square root: it is easy to see that 16 Idp’s contribute, and the
result is given by the tensor product of S½Fðxa;…; xdÞ� and
the combination

X
σa∈f0;1g

Wa−σ1;…;d−σ4
σ1;…;σ4 ðxa; xb; xc; xdÞ: ð11Þ

This combination vanishes and hence guarantees the
absence of square roots from two-loop MHV amplitudes.
Final results and checks.—In addition to the algebraic

part, we also compute the remaining part that is free of any
square roots; the computation of the symbol can be done
trivially, as long as we apply the integration rule consis-
tently to the complete weight-3 symbol including the
algebraic words and the rest [37]. We record the symbol
for Idpð1; 4; 7; 10Þ with n ¼ 12 in [38]. Remarkably, we
find that the complete symbol can be written in a compact
form by organizing it using 8þ 16 combinations of the last
entries with manifest symmetries. Equivalently, we express
its total differential dIdpði; j; k; lÞ as

1

2
Rī
j−1jd log

hiði − 1iþ 1Þðj − 1jÞðklÞi
hījihj − 1jkli þMikl

j−1jd log
hij − 1jki
hj − 1jkli

− ðj − 1j ↔ jjþ 1Þ þ ðī ↔ j̄Þ þ ðk̄ ↔ l̄Þ þ ðij ↔ klÞ ð12Þ

where only two independent weight-3 DCI functions,
Rī
j−1j and Mikl

j−1j are needed; each relabeling applies to
all previous terms, giving 8 and 16 images of these
functions, respectively. The algebraic words (10) contrib-
ute to the symbol of M only, while the symbol of R is
rational. We present both symbols in [38], where one
can easily count out the 164 rational letters of the
alphabet.
We have performed thorough checks on our result, such

as the physical first entry conditions and first two entries
conditions which are manifest in terms of Rī

j−1j and Mikl
j−1j.

One can easily check that the symbol is DCI, and as shown
in (12) it is symmetric in exchanging (i, j) with (l, k) and in
simultaneous exchange i ↔ j and k ↔ l, as well as
antisymmetric under i − 1 ↔ iþ 1 etc. A nontrivial check
is to see that the complete symbol is integrable. Moreover,
given the most generic Idpði; j; k; lÞ, it is important that any
finite degeneration of the integral remains well defined.
This happens when j ¼ iþ 2 (similarly l ¼ kþ 2), or k ¼
jþ 2 (similarly between l and i), and they can be viewed as
(multiple) collinear limits of the original integral. We have
checked that in all these cases the symbol remains finite,

which also gives results for these special cases. For
example, Idpð1; 3; 5; 7Þ for n ¼ 8 can be obtained from
the generic case by taking four collinear limits; the symbol,
recorded in [38] as well, contains two square roots and 108
rational letters. Last but not least, we take the difference
Idpð1; 3; 5; 7Þ − Idpð3; 5; 7; 1Þ and find perfect agreement
with the component χ1χ3χ5χ7 of the 8-point NMHV
amplitude from the Q̄ calculation [7].
Conclusions and outlook.—We have computed

the symbol of all finite double-pentagon integrals
Idpði; j; k; lÞ (with j > iþ 1 and l > kþ 1), which also
amount to all-multiplicity, Feynman-integral computation
of the finite part of two-loop MHV amplitudes, and all
χiχjχkχl components with nonadjacent i, j, k, l of two-loop
NMHV amplitudes. The alphabet consists of 96 algebraic
letters (6 for each of the 16 square roots), and 164 rational
letters. We see not only desirable physical conditions on
the first two entries, but also more interesting patterns for
the complete symbol. The compact expression (12) with the
symbols of R and M in [38] deserves further investigation,
which also give a compact formula for the square-root-free
symbol of two-loop NMHV components. It would be
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interesting to determine the weight-3 functions R and M,
which may have interesting physical meaning themselves.
Of course, it would also be nice to upgrade the symbol to
weight-4 functions (one possibility being the bootstrap
method along the lines of [10]).
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