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Open quantum Dicke models are paradigmatic systems for the investigation of light-matter interaction in
out-of-equilibrium quantum settings. Albeit being structurally simple, these models can show intriguing
physics. However, obtaining exact results on their dynamical behavior is challenging, since it requires the
solution of a many-body quantum system with several interacting continuous and discrete degrees of
freedom. Here, we make a step forward in this direction by proving the validity of the mean-field
semiclassical equations for open multimode Dicke models, which, to the best of our knowledge, so far has
not been rigorously established. We exploit this result to show that open quantum multimode Dicke models
can behave as associative memories, displaying a nonequilibrium phase transition toward a pattern-
recognition phase.
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Since its inception [1], the Dicke model has become a
paradigm for the study of light-matter interaction and its
equilibrium, as well as its isolated-system dynamical
properties, have been widely investigated theoretically
and experimentally [2–14]. Today, the interest is in under-
standing how the presence of an environment leading to
dissipative effects affects the behavior of Dicke models.
Several arguments indicate the persistence of the Dicke
superradiant phase transition [15–18] and those assertions
are further supported by numerical [19] and experimental
[20] evidence.
Particularly intriguing is the possibility that these non-

equilibrium spin-boson systems can feature dynamics akin
to associative memories [21,22], i.e., they can display
pattern-recognition behavior [23–28], and implementations
of this physics are being explored in realistic experimental
setups [29]. Couplings between spins and bosons encode
different patterns that, in the simplest case, are strings
of �1 [see Fig. 1(a)]. The overlap ξμ of the spin configu-
ration with pattern μ, which plays the role of an order
parameter, is defined by means of a generalized “magneti-
zation” [cf. Fig. 1(a)]. Assuming the initial configuration to
be close to one pattern, two different regimes may emerge.
In the first, the state converges due to dissipation to a
stationary one where all information about the initial time is
lost. As sketched in Fig. 1(b), this coincides with a regime
where the overlaps ξμ are all zero. In the other, the state
converges instead to a stationary one displaying a finite
overlap with the initially stored pattern. In that case, the
system “recognizes” the initial condition as a pattern and
stores this information in its nonequilibrium steady state.
In Dicke models, the observed stationary regime is

expected to depend on the spin-boson coupling strength
[see Fig. 1(b)].
Understanding whether this pattern-recognition behavior

corresponds to a genuine nonequilibrium phase requires the
study of quantum systems with a large number of bosons
and spins. Simulations in fully quantum regimes beyond
perturbative approaches [28–30] are thus infeasible.
Analytically, one may study these systems relying on so-
called mean-field equations obtained by assuming that the
expectation values of products of operators factorize
[15,19,31]. However, a proof of the validity of this
assumption in nonequilibrium open Dicke models is still
missing, and a widespread belief is that a “full quantum
treatment” may lead to different results.

(a) (b)

FIG. 1. Pattern recognition in Dicke models. (a) Patterns:
strings of �1 are encoded in the couplings Gμ;k between Nsp
spins and M bosonic modes. Each pattern is associated with a
mode. The overlap of the quantum state with the patterns is
defined as a generalized “magnetization” aligned with the
coefficients Gμ;k. (b) As a function of the spin-boson coupling
strength, the quantum system passes from a disordered phase, in
which it cannot store any pattern, to an “ordered” one, in which it
can recognize and protect a pattern.
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In this Letter, we provide a proof of the exactness of the
mean-field assumption for open multimode Dicke models.
This result is relevant as it solves an open question on the
validity of the semiclassical treatment for these systems.
Further, it allows us to establish the existence of a
nonequilibrium pattern-recognition phase transition in
Dicke models. Our proof, which takes inspiration from
Ref. [32], is of broad applicability: it can be adapted to
account for the presence of individual spin dissipative
processes [19], to account for time-dependent coefficients
in the generator [33–35], or even to other models with
all-to-all couplings [36–41] and multibody interactions
[42–44].
Open multimode Dicke models.—Our Dicke model

consists of an ensemble of Nsp spins coupled toM different
bosonic modes, described by annihilation and creation
operators aμ, a

†
μ, obeying canonical commutation relations

[45]. Spins are two-level systems with an excited state j•i
and a ground state j∘i. Transitions between states in the kth
spin are implemented by the Pauli operator σðkÞx , where

σxj • =∘i ¼ j∘=•i. The operator σðkÞz , with σzj•i ¼ j•i and
σzj∘i ¼ −j∘i, indicates the presence of an excitation. We

also define σðkÞy ¼ −iσðkÞz σðkÞx .
The (Markovian) nonequilibrium dynamics of the spin-

boson model is implemented by the Lindblad generator
_X ¼ L½X� [46–48], providing the time evolution of a
generic operator X. Defining nμ ¼ a†μaμ, we consider

L½X� ≔ i½H;X� þ
XM
μ¼1

κμ

�
a†μXaμ −

1

2
fnμ; Xg

�
: ð1Þ

The second term appearing on the right-hand side describes
boson losses at rate κμ for the different modes, while H is
the system Hamiltonian. This operator consists of a free
contribution for both spins and bosons,

HF ¼ Ω
XNsp

k¼1

σðkÞx þ
XM
μ¼1

Ωμnμ;

and of an interaction term,

Hint ¼
g0ffiffiffiffiffiffiffi
Nsp

p XM
μ¼1

XNsp

k¼1

Gμ;kðaμ þ a†μÞσðkÞz : ð2Þ

The coefficients Gμ;k specify the spin-boson interaction.
We consider these to be independent identically distributed
random variables assuming the values þ1 or −1 with equal
probability, as sketched in Fig. 1(a). The scaling 1=

ffiffiffiffiffiffiffi
Nsp

p
,

which is typical for these models, is important for establish-
ing a well-defined thermodynamic limit [15] (see also [49]
for an application to open systems). For each μ, the string
Gμ;k forms a pattern that is encoded in the Hamiltonian. A

key result of this work consists in showing that the
system can recognize and protect an initially stored
pattern for strong enough spin-boson coupling jg0j
(see Fig. 1).
Before showing this, we make some considerations that

bring the model into a convenient form (see Fig. 2). First,
without loss of generality, the first pattern, G1;k, which is
made of �1, can be brought into a pattern with all þ1 by
means of the gauge transformation σz → −σz applied to
those spins h for which, originally, G1;h ¼ −1. Then, we
reorder the remainingM − 1 rows of Gμ;k. We look at G2;k:
this has �1 at random positions. We now relabel the spins.
We take those with G2;h ¼ þ1 to the left and those with
G2;h ¼ −1 to the right. This reshaping does not affect the
first pattern. In addition, there is a k̃ such that for k ≤ k̃,
G2;k ¼ 1 while G2;k ¼ −1 otherwise. We then move to
G3;k, and we relabel spins as follows. In the subset of spins
for which G2;k ¼ 1, we have values of G3;k that can be
positive and negative. We thus reorder this subsequence in
such a way that all þ1 are moved on the left and −1 on the
right. The same can be done for the subset of the
sequence G3;k corresponding to values G2;k ¼ −1. This
procedure, sketched in Fig. 2, is then iterated up to the last
pattern.
This mapping generates 2M−1 subsets of spins, described

by “large-spin” operators and interacting with the bosonic
modes. For Nsp ≫ 1, these subsets are expected to have the
same number of spins. This is due to the fact that, given the
statistical properties of the Gμ;k, in a large enough set of
randomly chosen spins there is, at leading order in
extensivity of the set, an equal number of þ1 and of
−1, in their Gμ;k. We can thus consider subsets to contain
N ¼ Nsp=2M−1 spins. In this representation, the interaction
Hamiltonian reads

(a) (b)

FIG. 2. Mapping to large spins. (a) Example of the mapping for
M ¼ 3 patterns and Nsp ¼ 8 spins. The original coupling
between the μth mode and the kth spin is encoded in Gμ;k. To
perform the mapping, we first apply a gauge transformation,
making G1;k ¼ 1, ∀ k. Then, we reorder G2;k to put all þ1 first.
Finally, the last pattern is reordered by moving the þ1 toward the
right and the −1 toward the left in each subblock identified by the
new G2;k. In this way, 2M−1 subsets of spins Γk, equally coupled
with each mode, are identified (Γ1 and Γ4 are highlighted in the
figure for clarity). (b) These subsets of spins are described by
“large-spin” operators and couple to bosons as specified by the
matrix fMμ;k.
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HN
int ¼

gffiffiffiffi
N

p
XM
μ¼1

X2M−1

k¼1

fMμ;kðaμ þ a†μÞSz;k; ð3Þ

where Sa;k ¼
P

h∈Γk
σðhÞa is the sum of the σa-spin oper-

ators, which belong to the kth subset, denoted as Γk [see
Fig. 2(a)]. In addition, we have defined g ¼ g0=

ffiffiffiffiffiffiffiffiffiffi
2M−1

p
.

The coefficients fMμ;k ¼ �1 specify the interaction between
spins in Γk and the μth boson. This representation provides
a more compact formulation of the model. The mapping
can be extended to consider models whose spin-only part of
the dynamical generator is not invariant under the gauge
transformation or also to consider generic distributions for
Gμ;k [50].
Mean-field dynamics.—As a consequence of the pre-

vious mapping, it is sufficient for understanding the
behavior of our nonequilibrium Dicke model to focus on
the dynamics of the large-spin operators. In this represen-
tation, the generator is LN , the same as the one in Eq. (1)
with the Hamiltonian rewritten as HN ¼ HF þHN

int. The
expectation of time-evolved operators Xt ¼ etLN ½X� is
given by hXit ¼ ωtðXÞ ≔ ωðetLN ½X�Þ, where the functional
ω represents the initial state and ωt the time-evolved one.
As a consequence, we have

_ωtðXÞ ¼ ωtðLN ½X�Þ: ð4Þ

We are interested in the “macroscopic” operators [51–54]

mN
a;k ≔

1

N
Sa;k; for a ¼ x; y; z; αμ;N ≔

aμffiffiffiffi
N

p : ð5Þ

The first ones are the usual average magnetization operators
of the spin ensembles, while the rescaled bosonic operators
appear typically in superradiant transitions. Indeed, a
nonvanishing expectation of these operators implies a
macroscopic (∝ N) bosonic occupation.
We want to derive the dynamics of these quantum

operators in the thermodynamic limit N, Nsp → ∞. We
thus compute the action of the generator LN on the
operators in Eq. (5) and get [50]

LN ½mN
a;k�¼

X
b

�
−2Ωϵxab−2g

X
μ

ϵzabfMμ;kðα†μ;Nþαμ;NÞ
�
mN

b;k

LN ½αμ;N �¼−
�
iΩμþ

κμ
2

�
αμ;N−ig

X2M−1

k¼1

fMμ;km
N
z;k; ð6Þ

where ϵabc is the fully antisymmetric tensor. To make
progress, one typically assumes that the dynamics does not
generate correlations among the different constituents in
the thermodynamic limit, so that expectation values fac-
torize. This leads to the mean-field equations

_ma;k ¼ −2Ω
X
b

ϵxabmb;k − 2g
X
b;μ

ϵzabfMμ;kðα†μ þ αμÞmb;k;

_αμ ¼ −
�
iΩμ þ

κμ
2

�
αμ − ig

X2M−1

k¼1

fMμ;kmz;k: ð7Þ

In order to show that they are exact in the thermodynamic
limit, we need to prove that

lim
N→∞

ωtðmN
a;kÞ −ma;kðtÞ ¼ 0 ¼ lim

N→∞
ωtðαμ;NÞ − αμðtÞ; ð8Þ

meaning that the expectation of the operators of
Eq. (5) behaves, for large N, as the time-dependent scalar
functions ma;kðtÞ, αμðtÞ obeying Eq. (7). To obtain
this result, a proper strategy must be identified. In particu-
lar, an appropriate “cost function” controlling the
above limits is needed. Defining Ea;k¼mN

a;k−ma;kðtÞ and
Aμ¼αμ;N−αμðtÞ, we consider

ENðtÞ ≔
X2M−1

k¼1;a¼x;y;z

ωtðE2
a;kÞ þ

XM
μ¼1

ωtðA†
μAμ þ AμA

†
μÞ: ð9Þ

This quantity is a sum of positive contributions consisting
of the expectation of the square of the distance of the
operators from their mean-field counterpart. Namely, ENðtÞ
measures the fraction of spins or bosons not behaving as
dictated by Eq. (7). In addition, via Cauchy-Schwarz
inequality, one can show that

jωtðEa;kÞj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωtðE2

a;kÞ
q

≤
ffiffiffiffiffiffiffiffiffiffiffi
ENðtÞ

p
; ð10Þ

and thus limN→∞ ENðtÞ controls the limits in Eq. (8), as
desired. For physical initial states [52–54], with short-range
correlations, one has limN→∞ ENð0Þ ¼ 0. As we now show,
for these states, ENðtÞ vanishes for large N, implying the
exactness of the mean-field assumption for these non-
equilibrium multimode Dicke models.
Theorem.—With the above definitions, if the initial state

of the system is such that limN→∞ ENð0Þ ¼ 0, then, for all
finite t, we have that limN→∞ ENðtÞ ¼ 0.
Proof of theorem.—The full proof is reported in

Ref. [50]. Here we provide the main steps. The idea is
to use Gronwall’s lemma [55,56], which states that if a
positive, bounded, and N-independent constant C such that
_ENðtÞ ≤ CENðtÞ exists, then

ENðtÞ ≤ eCtENð0Þ: ð11Þ

With the assumption limN→∞ ENð0Þ ¼ 0, letting N → ∞ in
the above relation would prove the theorem. What is
missing is to show that such constant C indeed exists.
This can be achieved by directly inspecting the time
derivative of all terms forming ENðtÞ. They are given by
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sums of contributions having, for instance, the form
ωtðEb;kBAμÞ, where B can either be an operator or a scalar
from Eq. (7). In addition, it can be shown that

jωtðEb;kBAμÞj ≤ kBkENðtÞ;

and this gives a way to estimate a suitable constant C. We
thus obtain

d
dt

ENðtÞ ≤
���� ddt ENðtÞ

���� ≤ CENðtÞ;

and we can exploit Gronwall’s lemma to finish the proof of
the theorem as already discussed. □

Pattern-recognition phase transition.—With the above
result, we establish that the semiclassical mean-field
equations [Eq. (7)] correctly capture the behavior of our
system in the thermodynamic limit. As such, we can now
use these equations to unveil the presence of a nonequili-
brium pattern-recognition phase transition.
In the original formulation of the problem [see Eq. (2)

and Fig. 1(a)], we can define the overlap of the quantum
state of the spins with the pattern μ as

ξμ ≔ lim
Nsp→∞

1

Nsp

XNsp

k¼1

Gμ;khσðkÞz it:

This equation shows that, if the expectation value of the
operator σz is, for each spin, aligned with the corresponding
value of Gμ;k, then the overlap jξμj is different from
zero (pattern retrieval). Otherwise, ξμ tends to vanish for
Nsp → ∞ (pattern not retrieved). In the large-spin repre-
sentation, the overlaps can be expressed in terms of the
coefficients fMμ;k and of the macroscopic operators mN

z;k,
[cf. Eq. (3) and Fig. 2]. In particular,

ξμ ¼
1

2M−1

X2M−1

k¼1

fMμ;k limN→∞
ωtðmN

z;kÞ:

Invoking our theorem, we can thus study the dynamics and
the stationary properties of these overlaps through the
scalars mz;k, obeying the mean-field equations [Eq. (7)].
To prove the existence of the phase transition, we first

show the presence of different stationary solutions to
Eq. (7), featuring a finite overlap with one of the patterns.
Without loss of generality, we consider all rates of the
dynamical generator to be positive and, further, that the
constant of motion m2

T;k ¼
P

a m
2
a;k ¼ 1, ∀ k. Then, we

take the ansatz solution mz;k ¼ fMν;kjzj, aligned with pattern
ν, and look for conditions ensuring its existence as a
stationary solution for Eq. (7). Note that such ansatz has
indeed a finite overlap with pattern ν, since ξν ¼ jzj while

ξμ ¼ 0∀ μ ≠ ν, and that also mz;k ¼ −fMν;kjzj would be
valid, with ξν ¼ −jzj.
By substituting the ansatz for mz;k in Eq. (7), taking

my;k ¼ 0 and appropriately fixing the values of mx;k (see
Ref. [50] for details), we find that the relation

jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

4g40

�
Ω
Ων

�
2
�
Ω2

ν þ
�
κν
2

�
2
�
2

s
ð12Þ

must be satisfied in order for the assumed stationary
solution to exist. This is not always the case; indeed, jzj
must be a positive real number, jzj ∈ ½0; 1�, and this only
happens if the argument of the square root is positive. This
observation yields a critical value,

gcrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
Ω
Ων

��
Ω2

ν þ
�
κν
2

�
2
�s
;

such that for g0 ≥ gcrit the ansatz solution exists, with jzj
given by Eq. (12). On the other hand, if g0 < gcrit, we can
only have jzj ¼ 0, and we are outside the pattern-recog-
nition phase. The critical g depends on the pattern through
the parameters Ων, κν [see also Figs. 3(a),(b)]. Further, note
that a finite stationary overlap corresponds to a macro-
scopic occupation of the associated bosonic mode. Our
theorem indeed implies N−1ha†μaμi → jαμj2 for N → ∞,
and we have jαμj ∝ jξμj [50]. This feature, shown in
Fig. 3(b), establishes a connection between pattern recog-
nition and the superradiant phase transitions in open
multimode Dicke models.

(a) (b)

FIG. 3. Pattern-recognition phase transition. Comparison be-
tween theoretical prediction (solid lines) and numerical simu-
lations of the mean-field equations (circles). We consider M ¼ 4.
(a) Each curve corresponds to the stationary overlap jξμj
computed from the initial condition ξμ ¼ 1 as a function of
g0, for Ω ¼ 0.5, Ωμ ¼ Ωðμþ 2Þ. Rates are in units of κ. Different
colors correspond to values of μ growing as indicated by the
arrow. Both theoretical and numerical results display a non-
equilibrium phase transition, as shown by the behavior of the
overlap. (b) Same parameters and same order for the curves as in
(a). The occupation of the μth bosonic mode becomes macro-
scopically occupied when the corresponding pattern is stored in
the stationary state.
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Discussion.—We have derived two key results for multi-
mode Dicke models. First, we have shown that the
mean-field assumption, typically exploited to consider
the large-scale behavior of these systems, actually provides
an exact description in the thermodynamic limit. Second,
we have used this new insight to reveal the presence of a
nonequilibrium phase transition from a disordered phase to
a pattern-recognition phase in open multimode Dicke
models. The stability of stationary solutions, such as the
one of Eq. (12), for open Dicke models has been shown, for
instance, in Refs. [15,19]. For the multimode settings
investigated here, the agreement of our numerical results
with analytical ones (cf. Fig. 3) suggests that the proposed
stationary states, having finite overlap with the patterns,
possess stable basins of attraction in the pattern-recognition
phase. Interestingly, the critical spin-boson coupling
strength depends on the specific pattern through the
corresponding bosonic mode parameters. This may allow
for intermediate regimes of pattern recognition, where only
certain patterns can be stored and retrieved.
Following Ref. [37], we remark that the validity of the

semiclassical Eq. (5) provides a necessary ingredient to
obtain mathematically rigorous results on quantum fluctu-
ations. It would be interesting to exploit it to reobtain
bosonic descriptions [57,58] employed for the investigation
of quantum fluctuations in closed Dicke models and to
extend these to open systems, via quantum central limit
theorems [37,53,59]. Contrary to Holstein-Primakoff
approximations, these procedures do not assume a con-
served total spin operator and are thus more general [15].
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